352 research outputs found

    Practical Spectrophotometric Assay for the \u3cem\u3edapE\u3c/em\u3e-Encoded \u3cem\u3eN\u3c/em\u3e-Succinyl-L,L-Diaminopimelic Acid Desuccinylase, a Potential Antibiotic Target

    Get PDF
    A new enzymatic assay for the bacterial enzyme succinyl-diaminopimelate desuccinylase (DapE, E.C. 3.5.1.18) is described. This assay employs N6-methyl-N2-succinyl-L,L-diaminopimelic acid (N6-methyl-L,L-SDAP) as the substrate with ninhydrin used to detect cleavage of the amide bond of the modified substrate, wherein N6-methylation enables selective detection of the primary amine enzymatic product. Molecular modeling supported preparation of the mono-N6-methylated-L,L-SDAP as an alternate substrate for the assay, given binding in the active site of DapE predicted to be comparable to the endogenous substrate. The alternate substrate for the assay, N6-methyl-L,L-SDAP, was synthesized from the tert-butyl ester of Boc-L-glutamic acid employing a Horner-Wadsworth-Emmons olefination followed by an enantioselective reduction employing Rh(I)(COD)(S,S)-Et-DuPHOS as the chiral catalyst. Validation of the new ninhydrin assay was demonstrated with known inhibitors of DapE from Haemophilus influenza (HiDapE) including captopril (IC50 = 3.4 [± 0.2] μM, 3-mercaptobenzoic acid (IC50 = 21.8 [±2.2] μM, phenylboronic acid (IC50 = 316 [± 23.6] μM, and 2-thiopheneboronic acid (IC50 = 111 [± 16] μM. Based on these data, this assay is simple and robust, and should be amenable to high-throughput screening, which is an important step forward as it opens the door to medicinal chemistry efforts toward the discovery of DapE inhibitors that can function as a new class of antibiotics

    Definitions, Criteria and Global Classification of Mast Cell Disorders with Special Reference to Mast Cell Activation Syndromes: A Consensus Proposal

    Get PDF
    Activation of tissue mast cells (MCs) and their abnormal growth and accumulation in various organs are typically found in primary MC disorders also referred to as mastocytosis. However, increasing numbers of patients are now being informed that their clinical findings are due to MC activation (MCA) that is neither associated with mastocytosis nor with a defined allergic or inflammatory reaction. In other patients with MCA, MCs appear to be clonal cells, but criteria for diagnosing mastocytosis are not met. A working conference was organized in 2010 with the aim to define criteria for diagnosing MCA and related disorders, and to propose a global unifying classification of all MC disorders and pathologic MC reactions. This classification includes three types of `MCA syndromes' (MCASs), namely primary MCAS, secondary MCAS and idiopathic MCAS. MCA is now defined by robust and generally applicable criteria, including (1) typical clinical symptoms, (2) a substantial transient increase in serum total tryptase level or an increase in other MC-derived mediators, such as histamine or prostaglandin D 2, or their urinary metabolites, and (3) a response of clinical symptoms to agents that attenuate the production or activities of MC mediators. These criteria should assist in the identification and diagnosis of patients with MCAS, and in avoiding misdiagnoses or overinterpretation of clinical symptoms in daily practice. Moreover, the MCAS concept should stimulate research in order to identify and exploit new molecular mechanisms and therapeutic targets. Copyright (C) 2011 S. Karger AG, Base

    Standards of genetic testing in the diagnosis and prognostication of systemic mastocytosis in 2022: Recommendations of the EU-US cooperative group

    Get PDF
    Mastocytosis comprises rare heterogeneous diseases characterized by an increased accumulation of abnormal mast cells in various organs/tissues. The pathogenesis of mastocytosis is strongly linked to the presence of KIT-activating mutations. In systemic mastocytosis (SM), the most frequent mutation encountered is KIT p.D816V, whose presence constitutes one of the minor diagnostic criteria. Different techniques are used to search and quantify the KIT p.D816V mutant; however, allele-specific quantitative PCR and droplet digital PCR are today the most sensitive. The analysis of the KIT p.D816V allele burden has undeniable interest for diagnostic, prognostic, and therapeutic monitoring. The analysis of non–mast cell hematological compartments in SM is similarly important because KIT p.D816V multilineage involvement is associated with a worse prognosis. In addition, in advanced forms of SM, mutations in genes other than KIT are frequently identified and affect negatively disease outcome and response to therapy. Thus, combined quantitative and sensitive analysis of KIT mutations and next-generation sequencing of other recurrently involved myeloid genes make it possible to better characterize the extent of the affected cellular compartments and additional molecular aberrations, providing a more detailed overview of the complex mutational landscape of SM, in relation with the clinical heterogeneity of the disease. In this article, we report the latest recommendations of the EU-US Cooperative Group presented in September 2020 in Vienna during an international working conference, on the techniques we consider standard to detect and quantify the KIT p.D816V mutant in SM and additional myeloid mutations found in SM subtypes.D.D.M., J.J.L., and M.C.C. were supported by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health. P.V. was supported by the Austrian Science Fund (FWF) (grant nos. F4704-B20 and P32470-B)

    Standards of pathology in the diagnosis of systemic mastocytosis: recommendations of the EU-US cooperative group

    Get PDF
    Pathology plays a central role in the diagnosis of systemic mastocytosis (SM), its delineation from other neoplasms and reactive conditions, and in monitoring of SM under therapy. The morphologic hallmark of SM is the accumulation of spindle-shaped, hypogranulated mast cells (MCs) in bone marrow (BM) and other extracutaneous tissues. Four of the 5 World Health Organization–defined diagnostic criteria (ie, compact MC aggregates [=major criterion]; atypical MC morphology; activating KIT point mutations; aberrant expression of CD25 and/or CD2 and/or CD30 in MCs [=minor criteria]) can be addressed by the pathologist. The final classification of SM variants as either BM mastocytosis, indolent SM, smoldering SM, aggressive SM (ASM), SM with an associated hematologic neoplasm (SM-AHN), or MC leukemia (MCL) has important prognostic significance and requires the integration of certain morphological, clinical, radiological, and biochemical data, referred to as B- and C-findings. Substantial diagnostic challenges may be posed to the pathologist and clinician especially in the so-called advanced SM variants, that is, ASM, MCL, and SM-AHN. In this article, updated recommendations of the EU-US Cooperative Group regarding standards of pathology in the diagnosis of SM, presented during the year 2020 Working Conference held in September in Vienna, are reported.T. I. George was supported by the ARUP Institute for Clinical and Experimental Pathology. K. Hartmann was supported by the Swiss National Science Foundation, grant number 310030_207705. D. D. Metcalfe, J. J. Lyons, and M. Carter were supported by the Division of Intramural Research, National Institutes of Allergic and Infectious Diseases, National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not represent the official views of the NIH. P. Valent was supported by the Austrian Science Funds (FWF), projects F4701-B20 and F4704-B20

    Risk and management of patients with mastocytosis and MCAS in the SARS-CoV-2 (COVID-19) pandemic:Expert opinions

    Get PDF
    The COVID-19 (SARS-CoV-2) pandemic has massively distorted our health care systems and caused catastrophic consequences in our affected communities. The number of victims continues to increase and patients at risk can only be protected to a degree, since the virulent state may be asymptomatic. Risk factors concerning COVID-19-induced morbidity and mortality include advanced age, an impaired immune system, cardiovascular or pulmonary diseases, obesity, diabetes mellitus, and cancer treated with chemotherapy. Here within, we discuss the risk and impact of COVID-19 in patients with mastocytosis and mast cell activation syndromes. As no published data are yet available, expert opinions are, by necessity, based on case experience and reports from patients. Whereas the overall risk to acquire the SARS-CoV-2 virus may not be elevated in mast cell disease, certain conditions may increase the risk of infected patients to develop severe COVID-19. These factors include certain co-morbidities, mast cell activation-related events affecting the cardiovascular or bronchopulmonary system and chemotherapy or immunosuppressive drugs. Therefore, such treatments should be carefully evaluated on a case-by-case basis during a COVID-19 infection. By contrast, other therapies, such as anti-mediator-type drugs, venom immunotherapy, or vitamin D, should be continued. Overall, patients with mast cell disorders should follow the general and local guidelines in the COVID-19 pandemic and advice from their medical provider.P.V. was supported by the Austrian Science Fund (FWF), projects P32470-B and 46 F4704-B20. J.G. is supported by the Charles and Ann Johnson Foundation. 47 D.D.M. is supported by the Division of Intramural Research, NIAID.Peer reviewe

    Development of novel molecularly imprinted solid-phase microextraction fibers and their application for the determination of antibiotic drugs in biological samples by SPME-LC/MSn

    Get PDF
    Novel molecularly imprinted polymer (MIP)-coated fibers for solid-phase microextraction (SPME) fibers were prepared by using linezolid as the template molecule. The characteristics and application of these fibers were investigated. The polypyrrole, polythiophene, and poly(3-methylthiophene) coatings were prepared in the electrochemical polymerization way. The molecularly imprinted SPME coatings display a high selectivity toward linezolid. Molecularly imprinted coatings showed a stable and reproducible response without any influence of interferents commonly existing in biological samples. High-performance liquid chromatography with spectroscopic UV and mass spectrometry (MS) detectors were used for the determination of selected antibiotic drugs (linezolid, daptomycin, amoxicillin). The isolation and preconcentration of selected antibiotic drugs from new types of biological samples (acellular and protein-free simulated body fluid) and human plasma samples were performed. The SPME MIP-coated fibers are suitable for the selective extraction of antibiotic drugs in biological samples

    Global Classification of Mast Cell Activation Disorders:An ICD-10-CM–Adjusted Proposal of the ECNM-AIM Consortium

    Get PDF
    Mast cell activation (MCA) is common and occurs in a number of pathologic conditions, including IgE-dependent and independent allergic reactions, atopic disorders, autoimmune processes, and mastocytosis. In a subset of patients, no underlying disease and no known trigger of MCA are found. When the symptoms are severe, systemic, and recurrent, and accompanied by a diagnostic increase in the serum tryptase level or other mast cell mediators, an MCA syndrome (MCAS) may be diagnosed. In these patients, the symptoms typically respond to drugs suppressing MCA, mediator production in mast cells, or mediator effects. In each case, diagnostic consensus criteria must be fulfilled to diagnose MCAS. In other patients, MCA may be local, less severe, or less acute, or may be suspected but not confirmed, so that the diagnostic criteria of MCAS are not fulfilled. In these patients, it may be difficult to prove MCA, for example, by measuring multiple mast cell mediators or basophil activation, the latter as a surrogate of IgE-dependent hypersensitivity. However, validated diagnostic criteria for implicating suspected MCA behind such conditions are lacking, even if some of these conditions have recently been assigned to an International Classification of Diseases-10-Clinical Modification code (ICD-10-CM). In this article, we discuss diagnostic features and criteria and propose a ICD-10-CM–adjusted classification for disorders associated with MCA, herein referred to as MCA disorders (MCADs), with special emphasis on the delineation between confirmed MCAS, MCAD not fulfilling MCAS criteria, and suspected MCAD that is not present. In addition, we discuss the discrimination between overt MCAD and predisposing conditions, such as atopic states, mastocytosis, and hereditary alpha tryptasemia.</p

    Refined treatment response criteria for indolent systemic mastocytosis proposed by the ECNM-AIM consortium

    Get PDF
    Indolent systemic mastocytosis (ISM) has a favorable prognosis and normal life expectancy. However, many patients suffer from mast cell (MC) mediator-related symptoms, which significantly affect quality of life (QoL). Cutaneous, gastrointestinal, and neurological complaints, musculoskeletal pain, and the presence of skin lesions, anaphylaxis, and osteoporosis are the main symptoms and signs in ISM and must be assessed in all patients before and during treatment. Validated mastocytosis-specific patient-reported outcome measures (PROMs) should be used for this purpose. Serum tryptase and KIT D816V allele burden are recommended as secondary outcome parameters, noting that they do not reflect the severity of signs, symptoms, and related QoL impairment, but indirectly express MC burden. Changes from baseline of 90%, 60%, and 30% indicate complete response >90%, major response 60% to 90%, partial response 30% to 60%, and no response <30% to treatment. To conclude, we recommend the use of PROMs as primary outcome parameters to define treatment response in patients with ISM in clinical trials and in everyday clinical practice.M. C. Carter, J. J. Lyons, and D. D. Metcalfe were supported by the Division of Intramural Research, National Institutes of Allergic and Infectious Diseases, and National Institutes of Health. M. Niedoszytko was supported by the Medical University of Gdansk grant 02-0141/07/231. P. Valent was supported by the Austrian Science Fund (FWF) grant # P32470-B
    corecore