30 research outputs found

    Structure of apo-phosphatidylinositol transfer protein α provides insight into membrane association

    No full text
    Phosphatidylinositol transfer protein α (PITPα) is a ubiquitous and highly conserved protein in multicellular eukaryotes that catalyzes the exchange of phospholipids between membranes in vitro and participates in cellular phospholipid metabolism, signal transduction and vesicular trafficking in vivo. Here we report the three-dimensional crystal structure of a phospholipid-free mouse PITPα at 2.0 Å resolution. The structure reveals an open conformation characterized by a channel running through the protein. The channel is created by opening the phospholipid-binding cavity on one side by displacement of the C-terminal region and a hydrophobic lipid exchange loop, and on the other side by flattening of the central β-sheet. The relaxed conformation is stabilized at the proposed membrane association site by hydrophobic interactions with a crystallographically related molecule, creating an intimate dimer. The observed open conformer is consistent with a membrane-bound state of PITP and suggests a mechanism for membrane anchoring and the presentation of phosphatidylinositol to kinases and phospholipases after its extraction from the membrane. Coordinates have been deposited in the Protein Data Bank (accession No. 1KCM)

    A troponin switch that regulates muscle contraction by stretch instead of calcium

    No full text
    The flight muscles of many insects have a form of regulation enabling them to contract at high frequencies. The muscles are activated by periodic stretches at low Ca(2+) levels. The same muscles also give isometric contractions in response to higher Ca(2+). We show that the two activities are controlled by different isoforms of TnC (F1 and F2) within single myofibrils. F1 binds one Ca(2+) with high affinity in the C-terminal domain and F2 binds one Ca(2+) in the C-terminal domain and one exchangeable Ca(2+) in the N-terminal domain. We have characterised the isoforms and determined their effect on the development of stretch-activated and Ca(2+)-activated tension by replacing endogenous TnC in Lethocerus flight muscle fibres with recombinant isoforms. Fibres with F1 gave stretch-activated tension and minimal isometric tension; those with F2 gave Ca(2+)-dependent isometric tension and minimal stretch-activated tension. Regulation by a TnC responding to stretch rather than Ca(2+) is unprecedented and has resulted in the ability of insect flight muscle to perform oscillatory work at low Ca(2+) concentrations, a property to which a large number of flying insects owe their evolutionary success

    The Structure of Lethocerus Troponin C: Insights into the Mechanism of Stretch Activation in Muscles

    Get PDF
    SummaryTo gain a molecular description of how muscles can be activated by mechanical stretch, we have solved the structure of the calcium-loaded F1 isoform of troponin C (TnC) from Lethocerus and characterized its interactions with troponin I (TnI). We show that the presence of only one calcium cation in the fourth EF hand motif is sufficient to induce an open conformation in the C-terminal lobe of F1 TnC, in contrast with what is observed in vertebrate muscle. This lobe interacts in a calcium-independent way both with the N terminus of TnI and, with lower affinity, with a region of TnI equivalent to the switch and inhibitory peptides of vertebrate muscles. Using both synthetic peptides and recombinant proteins, we show that the N lobe of F1 TnC is not engaged in interactions with TnI, excluding a regulatory role of this domain. These findings provide insights into mechanically stimulated muscle contraction

    Tripolin A, a Novel Small-Molecule Inhibitor of Aurora A Kinase, Reveals New Regulation of HURP’s Distribution on Microtubules

    Get PDF
    Mitotic regulators exhibiting gain of function in tumor cells are considered useful cancer therapeutic targets for the development of small-molecule inhibitors. The human Aurora kinases are a family of such targets. In this study, from a panel of 105 potential small-molecule inhibitors, two compounds Tripolin A and Tripolin B, inhibited Aurora A kinase activity in vitro. In human cells however, only Tripolin A acted as an Aurora A inhibitor. We combined in vitro, in vivo single cell and in silico studies to demonstrate the biological action of Tripolin A, a non-ATP competitive inhibitor. Tripolin A reduced the localization of pAurora A on spindle microtubules (MTs), affected centrosome integrity, spindle formation and length, as well as MT dynamics in interphase, consistent with Aurora A inhibition by RNAi or other specific inhibitors, such as MLN8054 or MLN8237. Interestingly, Tripolin A affected the gradient distribution towards the chromosomes, but not the MT binding of HURP (Hepatoma Up-Regulated Protein), a MT-associated protein (MAP) and substrate of the Aurora A kinase. Therefore Tripolin A reveals a new way of regulating mitotic MT stabilizers through Aurora A phosphorylation. Tripolin A is predicted to bind Aurora A similarly but not identical to MLN8054, therefore it could be used to dissect pathways orchestrated by Aurora kinases as well as a scaffold for further inhibitor development. © 2013 Kesisova et al

    Functional mode analysis of the Cα RMSD of active site residues.

    No full text
    <p>(A/B) Scatter plots of the data versus the model using the cross-validation sets only. (C/D) The functional mode representing the kinase C- and N-lobe twisting motion for the WT and mutant proteins, respectively. Red: activation loop; yellow: catalytic loop; orange: P-loop; brown: hinge; magenta: adenine pocket; blue: affinity pocket (hydrophobic region I); black: specificity pocket.</p

    ATP increases the affinity between MutS ATPase domains: Implications for ATP hydrolysis and conformational changes

    No full text
    MutS is the key protein of the Escherichia coli DNA mismatch repair system. It recognizes mispaired and unpaired bases and has intrinsic ATPase activity. ATP binding after mismatch recognition by MutS serves as a switch that enables MutL binding and the subsequent initiation of mismatch repair. However, the mechanism of this switch is poorly understood. We have investigated the effects of ATP binding on the MutS structure. Crystallographic studies of ATP-soaked crystals of MutS show a trapped intermediate, with ATP in the nucleotide-binding site. Local rearrangements of several residues around the nucleotide-binding site suggest a movement of the two ATPase domains of the MutS dimer toward each other. Analytical ultracentrifugation experiments confirm such a rearrangement, showing increased affinity between the ATPase domains upon ATP binding and decreased affinity in the presence of ADP. Mutations of specific residues in the nucleotide-binding domain reduce the dimer affinity of the ATPase domains. In addition, ATP-induced release of DNA is strongly reduced in these mutants, suggesting that the two activities are coupled. Hence, it seems plausible that modulation of the affinity between ATPase domains is the driving force for conformational changes in the MutS dimer. These changes are driven by distinct amino acids in the nucleotide-binding site and form the basis for long-range interactions between the ATPase domains and DNA-binding domains and subsequent binding of MutL and initiation of mismatch repair

    PI3Kα binding to PIP2-liposomes.

    No full text
    <p>Typical SPR sensograms depicting concentration dependent binding of WT p110α/p85α (A) and H1047R p110α(H1047R)/p85α (B) PI3Kα to liposomes. Signal from WT at 1.25 and 2 nM (A) was nil and is not shown for clarity. Vertical bars indicate beginning and end of injection. Data shown are referenced and corrected for bulk effect.</p

    Investigating the Structure and Dynamics of the <i>PIK3CA</i> Wild-Type and H1047R Oncogenic Mutant

    No full text
    <div><p>The <i>PIK3CA</i> gene is one of the most frequently mutated oncogenes in human cancers. It encodes p110<i>α</i>, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3Kα), which activates signaling cascades leading to cell proliferation, survival, and cell growth. The most frequent mutation in <i>PIK3CA</i> is H1047R, which results in enzymatic overactivation. Understanding how the H1047R mutation causes the enhanced activity of the protein in atomic detail is central to developing mutant-specific therapeutics for cancer. To this end, Surface Plasmon Resonance (SPR) experiments and Molecular Dynamics (MD) simulations were carried out for both wild-type (WT) and H1047R mutant proteins. An expanded positive charge distribution on the membrane binding regions of the mutant with respect to the WT protein is observed through MD simulations, which justifies the increased ability of the mutated protein variant to bind to membranes rich in anionic lipids in our SPR experiments. Our results further support an auto-inhibitory role of the C-terminal tail in the WT protein, which is abolished in the mutant protein due to loss of crucial intermolecular interactions. Moreover, Functional Mode Analysis reveals that the H1047R mutation alters the twisting motion of the N-lobe of the kinase domain with respect to the C-lobe and shifts the position of the conserved P-loop residues in the vicinity of the active site. These findings demonstrate the dynamical and structural differences of the two proteins in atomic detail and propose a mechanism of overactivation for the mutant protein. The results may be further utilized for the design of mutant-specific PI3Kα inhibitors that exploit the altered mutant conformation.</p></div
    corecore