332 research outputs found

    Photoenergy transduction in halobacterium halobium

    Get PDF
    The structure and function of a rhodopsin-like pigment bacteriorhodopsin, discovered and isolated from the membranes of the halophile Halobacterium halobium, were studied. Intermediatesm appearing in the cyclic photoreaction that drives the proton translocation, were spectroscopically characterized. The charge translocation in membrane monolayers and mulitlayers placed between electrodes were kinetically resolved. A model was developed for the proton translocation process, in which the isomerization of the retinal Schiff base decreases its pK to drive the proton off and simultaneaouly changes the connectivity from the cytoplasmic surface to the external surface. The stoichiometry of proton pumping in intact cells and the effect of the light generated electrochemical potential on the kinetics of the photoreaction cycle and the synthesis of ATP were investigated

    Assessing Differences in Species Susceptibility to Phocine Distemper Virus (PDV) in Harp (Phoca groenlandica), Harbor (Phoca vitulina concolor) and Gray Seals (Halichoerus grypus) of the Northwest Atlantic

    Get PDF
    The recent emergence of morbillivirus in marine mammals as the etiology of several large scale mortality events raised questions about the role of immunosuppressive persistent organic pollutants and natural toxins in the severity, extent and duration of events. A morbillivirus of marine mammals, Phocine distemper virus (PDV), had devastating population level effects in Europe in 1988 and 2002. In 2006, a new isolate of PDV was determined to be responsible for mortality during the 2006 Northeast US Pinniped Unusually Mortality Event. The recent North American PDV mortality event provided a means to test several hypotheses designed to increase our overall understanding of different effects of PDV USA 2006 on harbor, harp and gray seals, and the relationship between PDV susceptibility and both natural and anthropogenic chemical stressors. The development of a sensitive duplex RT-qPCR assay utilizing the isolated North American strain, PDV USA 2006, allowed investigation into differences in species susceptibility in naturally infected as well as in-vitro infected host immune cells. In this study we demonstrated that species differences in susceptibility do exist in the quantity of virus produced during the course of infection. We also determined that differences in-vitro correlate with findings in seals naturally infected with PDV USA 2006. Furthermore, we described the effects of Aroclor 1260 on harbor seal peripheral blood mononuclear cell (PBMC) susceptibility in-vitro and show a disruption in the timing of the infection eventually resulting in more severe infection. In contrast, low levels of saxitoxin (STX) induced a transient increase in PDV replication during early infection and affected T cell proliferation. This is the first in-vitro exposure of immune cells of seals to STX to determine an immunomodulatory effect in a marine mammal, and this is the first documentation of an effect of exposure to STX and resultant change in quantity of morbillivirus after in-vitro exposure in harbor seal PBMCs. While it is impossible to assess all factors, this research contributes to the collective understanding of why different outcomes are observed in different seal species during PDV infection, with new insights into environmental factors that may influence those outcomes

    Gulf of Maine seals - populations, problems and priorities

    Get PDF
    Meeting held: May 28th – 29th 2009, WHOI, Quissett Campus, Sponsored by the Marine Mammal Center at WHOIAs pinniped populations shift and change along the northeast U.S. and Canadian coastline, so too do the interests and issues of regional residents, scientists and stakeholders. In May 2009 the Woods Hole Oceanographic Institution (WHOI) sponsored a meeting resulting in recommendations in three key areas regarding pinnipeds: population dynamics, human interaction and disease/health. The population group recommended: developing long-term surveys over all seasons and geographic ranges, coordinating sampling efforts for dietary research, refining correction factors for survey results, increasing documentation of fishery interactions and developing means of funding. The human interactions group recommended: addressing marine debris, developing survey, reporting and retrieval protocols for discarded fishing gear, studying impact of and expanding education and outreach for commercial seal watching, researching methods to deter depredation from fishing gear, streamlining the permitting processes for acoustic deterrent and gear modification research, and increasing cooperative research and outreach to the fishing community. The health and disease working group recommended: establishing baseline health indicators, addressing priority disease concerns, creating a pool of resources for standardized analysis of normal and unusual health event monitoring, determining standard health baselines for release, establishing a health consortium, improving communication along the coastline and establishing long term funding and ongoing collaboration.Funding was provided by the Woods Hole Oceanographic Institution Marine Mammal Cente

    Seals and ecosystem health : meeting report of the Northwest Atlantic Seal Research Consortium

    Get PDF
    On May 1 and 2, 2015, over 75 people attended the Northwest Atlantic Seal Research Consortium's first official biennial two day scientific meeting, "Seals and Ecosystem Health", at Salem State University in Salem, Massachusetts. The focus of the meeting was addressed by two keynote presentations: "Seals and Ecosystem Health" and "Marine mammals and ecosystem functioning: what can recovering seal populations teach us?" The first day of the meeting featured 16 oral and two poster presentations, covering a diverse range of topics highlighting the important underlying concepts, data gaps and future directions. Following the theme of the meeting, attendees discussed the nature of ecosystems, acknowledging the complex and often cryptic interactions between components, with cumulative and synergistic effects on animals and their environment. As our understanding of the ecological role of seals in the Northwest Atlantic grows, the cumulative interactions increase our recognition of seals as sentinels of ecosystem health. Meeting presentations highlighted the value of existing data and ongoing research efforts, including long-term population monitoring, tagging and photo-identification, stranding response, and rehabilitation facilities. The importance of observational effort was recognized as a critical component in detecting mortality events, documenting population processes in remote locations and cryptic species interactions. Research priorities identified included development of molecular tools for study of diet and disease, population dynamics studies (demographics and trends), telemetry-based investigations of spatiotemporal distribution, and model- and field-based ecosystem-level studies. Several of the presentations and the panel discussion, "Addressing Perception vs. Reality: How data (or lack of data) affects public perceptions and management decisions," highlighted the diverse and evolving perspectives with which society views seals, perspectives that are often biased by the backgrounds of individual humans. Diverse opinions necessitate engagement of stakeholders and the public, and societal objectives need to be defined in order to effect science-based natural resource management at an ecosystem level. At the closing of the meeting, recommendations from the panel discussion and for the overall goals of NASRC were discussed.Funding was provided by the Woods Hole Oceanographic Institution Marine Mammal Center and the US Marine Mammal Commissio

    Report of large whale restraint workshop

    Get PDF
    Location: Carriage House, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Date: February 7th & 8th 2006A number of large cetacean species are seriously injured and killed by entanglement in fishing gear used in the waters off the eastern United States and Canada. Entanglement most frequently involves rope or lines wrapped around the head, the flippers, body, in the mouth, around the tail flukes or any combination of the aforementioned body parts. Consequences of entanglement are particularly grave for North Atlantic right whales, which currently number about 300 whales and are declining due, in part, to this entanglement-related mortality. Right whales are frequently intractable and are very difficult and potentially unsafe to work with while attempting to disentangle the animal. Modifications and technological advances are needed to control, restrain and overall increase the success rate at which right whales are able to be cut free from entangling gear.National Marine Fisheries Servic

    Development of a one-step duplex RT-qPCR for the quantification of phocine distemper virus

    Get PDF
    Author Posting. © Wildlife Disease Association, 2015. This article is posted here by permission of Wildlife Disease Association for personal use, not for redistribution. The definitive version was published in Journal of Wildlife Diseases 51 (2015): 454-465, doi:10.7589/2014-05-142.Worldwide, stranded marine mammals and the network personnel who respond to marine mammal mortality have provided much of the information regarding marine morbillivirus infections. An assay to determine the amount of virus present in tissue samples would be useful to assist in routine surveying of animal health and for monitoring large-scale die-off events. False negatives from poor-quality samples prevent determination of the true extent of infection, while only small amounts of tissue samples or archived RNA may be available at the time of collection for future retrospective analysis. We developed a one-step duplex real-time reverse transcriptase-quantitative-PCR assay (RT-qPCR) based on Taqman probe technology to quantify phocine distemper virus (PDV) isolated from an outbreak in harbor (Phoca vitulina concolor) and gray seals (Halichoerus grypus) along the northeast US coast in 2006. The glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) gene was selected to assess RNA quality. This duplex assay is specific for PDV and sensitive through a range of 100 to 109 copies ds-plasmid DNA. For the GAPDH target, the reaction in duplex amplified 100 to 109 copies of ds-plasmid DNA and was detectable in multiple seal species. This assay reduced the likelihood of false negative results due to degradation of tissues and well-to-well variability while providing sensitive and specific detection of PDV, which would be applicable in molecular epidemiologic studies and pathogen detection in field and laboratory investigations involving a variety of seal species.This project was possible thanks to the John H. Prescott Marine Mammal Rescue Assistance Grant Program (Grant NA10NMF4390260) and with support from the National Oceanographic and Atmospheric Administration/University of Connecticut Oceans and Human Health I-RICH Fellowship.2016-04-0

    Gulf of Maine seals - fisheries interactions and integrated research : final report

    Get PDF
    Meeting held: October 28, 2011, Provincetown Center for Coastal Studies, Provincetown, MA. Sponsored by the Marine Mammal Center at the Woods Hole Oceanographic Institution and the Provincetown Center for Coastal StudiesThe 2011 meeting, “Gulf of Maine Seals: Fisheries Interactions and Integrated Research”, held at the Provincetown Center for Coastal Studies (PCCS), featured posters and oral presentations as well as a series of discussion groups. This meeting was a follow up to the 2009 meeting, “Gulf of Maine Seals - Populations, Problems and Priorities”, held at the Woods Hole Oceanographic Institution (WHOI) (Bogomolni et al. 2010). At the conclusion of the 2009 meeting, attendees emphasized the need to improve communication, to obtain funding for long term research, to continue meeting on a regular basis, to increase data and data sharing, and to support cross cutting research between the meeting’s three primary topic areas: disease and health; human and fishery interactions; and population biology. The overarching goals of the 2011 meeting were to discuss and share work to date, present some of the tools developed since the 2009 meeting, and outline goals for future integrated research. One of the tools presented within the framework of cross-cutting research areas and integrative research was the development of a sightings database and website for uniquely identifiable (unique pelage, scars, lesions, tagged, branded, marked, etc.) animals. The practicality of this tool as a means to increase communication was discussed. Additionally, seal/fisheries interactions throughout the Gulf of Maine, Cape Cod and waters off of the northeast U.S. have continued to concern stakeholders since the 2009 meeting. The urgency of documenting, understanding and mitigating these interactions has become more apparent. Therefore, the focus of the 2011 Provincetown meeting was on fisheries interaction and related topics raised at the last 2009 workshop and in the meetings with Cape Cod fishermen described below. For the purposes of this report, 'fisheries interaction' can be direct/operational (e.g. depredation, when seals remove fish from gear; or entanglement/bycatch, when seals are unintentionally captured), or indirect/ecological (competition, displacement or other large-scale interactions between seals and fisheries). Stakeholder concerns about fisheries interactions and recent increases in local seal abundance were rising prior to the 2009 meeting. In December of 2006, the Chatham-based Cape Cod Commercial Hook Fishermen’s Association (CCCHFA) took the lead in organizing a meeting entitled, “Structuring a Novel Research Team to Define and Assess the Impact of Human/Seal Interactions on Cape Cod/Gulf of Maine through Ecosystem-Based Analysis”. Participants included fishermen, policy makers, environmental organizations and researchers aiming to develop a unique partnership to study the New England seal population. The goal of this meeting was to create a research team that would define the ecological role of seals in Cape Cod waters by studying population dynamics, behavior, and health. This meeting resulted in a successful partnership, financially aided by the International Fund for Animal Welfare (IFAW), between fishermen and seal researchers. A cost-effective cooperative research agreement was reached whereby seal researchers were provided boat transport around the Chatham and Monomoy areas by local fishermen. This agreement allowed students and researchers to gain access to areas off of Chatham that would otherwise not have been accessible. It also supported a collaborative effort to increase understanding and communication between stakeholders. In addition to the CCCHFA-led meeting in 2006, a series of informal meetings have been held on Cape Cod between commercial and recreational fishermen and marine scientists. This work was initially funded by the Cape Cod Five Cents Savings Bank Charitable Foundation. Owen Nichols and Lisa Sette (PCCS) have held individual meetings with commercial fishermen in Chatham, Orleans, and Provincetown, and recreational fishermen, outfitters, and associations throughout the Outer Cape. These individual meetings were followed by larger group meetings in Eastham and Chatham in 2010 and 2011, and more are planned for 2012. Attendees included commercial and recreational fishermen and scientists, and discussion topics included observed seal/fishery interactions and potential collaborative research projects. The goal of the meetings is to develop a working group composed of members of the fishing and scientific communities with expertise in marine mammal and fisheries ecology. The above meetings laid the foundation for the 2011 meeting, during which members of the scientific and fishing communities gathered to focus on fisheries interactions and integrated research techniques to quantify and mitigate interactions. Several invited presentations were given, some of which were scheduled (Appendix A) with selected abstracts provided (Appendix B), and some of which were delivered on an ad hoc basis upon request from organizers or attendees (see Appendix F for edited transcripts of presentations). In order to ensure that the fishing community had a distinct voice, a forum was included in the agenda, during which fishermen were encouraged to share their observations, experiences and concerns. Separately, moderated discussion groups focused specifically on fisheries interactions, tagging and tracking, and management issues. All four sessions, despite their specific foci, shared common themes such as the need for collaborative research involving both the scientific and fishing communities. Recommendations from the discussion groups and summaries from each session are listed on the following pages.Funding was provided by the Woods Hole Oceanographic Institution Marine Mammal Center and the Provincetown Center for Coastal Studie

    Marine mammal necropsy : an introductory guide for stranding responders and field biologists

    Get PDF
    This necropsy manual is designed to establish a base level of profiency in marine mammal necropsy techniques. It is written for stranding network members who do not have a formal pathobiological training and have limited knowledge of anatomy. Anatomical and pathological jargon has been kept to a minimum. This manual is divided into six sections: preliminary data, sample management, pinniped, small ceetacean, large whale (at sea and on the beach), and multiple appendices (A-H). A well-illustrated, carefully written gross necropsy report is essential to an adequate diagnostic investigation. Gross reports with significant detail and description tend to engender useful histopathological findings. A sample blank gross necropsy report and guidelines in writing a report can be found in Appendices A & B. Overall, this guide aims to lead the enquiring mind through the necessary steps to produce such reports. While this manual focuses on process and interpretation, it is important to understand that the gross necropsy is primarily about making detailed, descriptive observations without bias as to possible etiology. The necropsy should establish a list of differential diagnoses and the sampling be directed by an attempt to discriminate between them.Funding was provided by the National Oceanic and Atmospheric Administration under Cooperative Grant No. NA05NMF4391165

    Emerging zoonoses in marine mammals and seabirds of the Northeast U.S.

    Get PDF
    Author Posting. © IEEE, 2006. Author Posting. © IEEE, 2006. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in Proceedings Oceans 2006, Boston, MA, USA, 5 pp, doi:10.1109/OCEANS.2006.306826.In the Northeast United States, marine vertebrates come into contact with each other and with humans through a variety of mechanisms which allow for the transfer of pathogens from one taxa to another. Though there are many ways in which humans come into contact with infectious agents, there is an inadequate understanding of the prevalence of clinical and sub-clinical zoonotic agents in the marine vertebrates of the Northeast United States. We are strengthening our understanding of the issue by targeting marine mammals and seabirds of New England and screening normal and diseased individuals of this ecosystem to establish a baseline prevalence of zoonotic agents in this ecosystem. Samples from stranded, bycaught and wild marine mammals and seabirds have been found to be positive for our screened pathogens. Most notable are the diseases found in bycaught marine mammals as well as wild caught individuals. Our current focus is specifically on influenza A and B, brucellosis, leptospirosis, Giardia and Cryptosporidium. Samples for virology, bacterial screening and molecular screening are being archived and analyzed as practical. Our goal is to create an optimized PCR-based molecular detection protocol for the above agents.This research is supported by NOAA Ocean and Human Health Initiative Grant Number NA05NOS4781247 and NOAA Prescott Grant NA05NMF4391165
    • …
    corecore