504 research outputs found

    Phase transition in the Higgs model of scalar dyons

    Full text link
    In the present paper we investigate the phase transition "Coulomb--confinement" in the Higgs model of abelian scalar dyons -- particles having both, electric ee and magnetic gg, charges. It is shown that by dual symmetry this theory is equivalent to scalar fields with the effective squared electric charge e^{*2}=e^2+g^2. But the Dirac relation distinguishes the electric and magnetic charges of dyons. The following phase transition couplings are obtained in the one--loop approximation: \alpha_{crit}=e^2_{crit}/4\pi\approx 0.19, \tilde\alpha_{crit}=g^2_{crit}/4\pi\approx 1.29 and \alpha^*_{crit}\approx 1.48.Comment: 16 pages, 2 figure

    Nonlinear Bogolyubov-Valatin transformations and quaternions

    Full text link
    In introducing second quantization for fermions, Jordan and Wigner (1927/1928) observed that the algebra of a single pair of fermion creation and annihilation operators in quantum mechanics is closely related to the algebra of quaternions H. For the first time, here we exploit this fact to study nonlinear Bogolyubov-Valatin transformations (canonical transformations for fermions) for a single fermionic mode. By means of these transformations, a class of fermionic Hamiltonians in an external field is related to the standard Fermi oscillator.Comment: 6 pages REVTEX (v3: two paragraphs appended, minor stylistic changes, eq. (39) corrected, references [10]-[14], [36], [37], [41], [67]-[69] added; v4: few extensions, references [62], [63] added, final version to be published in J. Phys. A: Math. Gen.

    Anderson Localization of Bogolyubov Quasiparticles in Interacting Bose-Einstein Condensates

    Full text link
    We study the Anderson localization of Bogolyubov quasiparticles in an interacting Bose-Einstein condensate (with healing length \xi) subjected to a random potential (with finite correlation length \sigma_R). We derive analytically the Lyapunov exponent as a function of the quasiparticle momentum k and we study the localization maximum k_{max}. For 1D speckle potentials, we find that k_{max} is proportional to 1/\xi when \xi is much larger than \sigma_R while k_{max} is proportional to 1/\sigma_R when \xi is much smaller than \sigma_R, and that the localization is strongest when \xi is of the order of \sigma_R. Numerical calculations support our analysis and our estimates indicate that the localization of the Bogolyubov quasiparticles is accessible in current experiments with ultracold atoms.Comment: published version (no significant changes compared to last version

    Localization of Bogoliubov quasiparticles in interacting Bose gases with correlated disorder

    Full text link
    We study the Anderson localization of Bogoliubov quasiparticles (elementary many-body excitations) in a weakly interacting Bose gas of chemical potential μ\mu subjected to a disordered potential VV. We introduce a general mapping (valid for weak inhomogeneous potentials in any dimension) of the Bogoliubov-de Gennes equations onto a single-particle Schr\"odinger-like equation with an effective potential. For disordered potentials, the Schr\"odinger-like equation accounts for the scattering and localization properties of the Bogoliubov quasiparticles. We derive analytically the localization lengths for correlated disordered potentials in the one-dimensional geometry. Our approach relies on a perturbative expansion in V/μV/\mu, which we develop up to third order, and we discuss the impact of the various perturbation orders. Our predictions are shown to be in very good agreement with direct numerical calculations. We identify different localization regimes: For low energy, the effective disordered potential exhibits a strong screening by the quasicondensate density background, and localization is suppressed. For high-energy excitations, the effective disordered potential reduces to the bare disordered potential, and the localization properties of quasiparticles are the same as for free particles. The maximum of localization is found at intermediate energy when the quasicondensate healing length is of the order of the disorder correlation length. Possible extensions of our work to higher dimensions are also discussed.Comment: Published versio

    Maximal width of the separatrix chaotic layer

    Get PDF
    The main goal of the paper is to find the {\it absolute maximum} of the width of the separatrix chaotic layer as function of the frequency of the time-periodic perturbation of a one-dimensional Hamiltonian system possessing a separatrix, which is one of the major unsolved problems in the theory of separatrix chaos. For a given small amplitude of the perturbation, the width is shown to possess sharp peaks in the range from logarithmically small to moderate frequencies. These peaks are universal, being the consequence of the involvement of the nonlinear resonance dynamics into the separatrix chaotic motion. Developing further the approach introduced in the recent paper by Soskin et al. ({\it PRE} {\bf 77}, 036221 (2008)), we derive leading-order asymptotic expressions for the shape of the low-frequency peaks. The maxima of the peaks, including in particular the {\it absolute maximum} of the width, are proportional to the perturbation amplitude times either a logarithmically large factor or a numerical, still typically large, factor, depending on the type of system. Thus, our theory predicts that the maximal width of the chaotic layer may be much larger than that predicted by former theories. The theory is verified in simulations. An application to the facilitation of global chaos onset is discussed.Comment: 18 pages, 16 figures, submitted to PR

    Bare vs effective pairing forces. A microscopic finite-range interaction for HFB calculations in coordinate space

    Full text link
    We propose a microscopic effective interaction to treat pairing correlations in the 1S0^{1}S_0 channel. It is introduced by recasting the gap equation written in terms of the bare force into a fully equivalent pairing problem. Within this approach, the proposed interaction reproduces the pairing properties provided by the realistic AV18AV18 force very accurately. Written in the canonical basis of the actual Bogolyubov transformation, the force takes the form of an off-shell in-medium two-body matrix in the superfluid phase multiplied by a BCS occupation number 2ρm2 \rho_{m}. This interaction is finite ranged, non local, total-momentum dependent and density dependent. The factor 2ρm2 \rho_{m} emerging from the recast of the gap equation provides a natural cut-off and makes zero-range approximations of the effective vertex meaningful. Performing such an approximation, the roles of the range and of the density dependence of the interaction can be disentangled. The isoscalar and isovector density-dependences derived ab-initio provide the pairing force with a strong predictive power when extrapolated toward the drip-lines. Although finite ranged and non local, the proposed interaction makes HFB calculations of finite nuclei in coordinate space tractable. Through the two-basis method, its computational cost is of the same order as for a zero-range force.Comment: 43 pages, 13 figures. Published versio

    Bogolyubov-Hartree-Fock approach to studying the QCD ground state

    Full text link
    The quark's behaviour while influenced by a strong stochastic gluon field is analyzed. An approximate procedure for calculating the effective Hamiltonian is developed and the corresponding ground state within the Hartree-Fock-Bogolyubov approach is found. The comparative analysis of various Hamiltonian models is given and transition to the chiral limit in the Keldysh model is discussed in detail.Comment: 18 pages, 4 figures, new version of the manuscrip

    Universality of Cluster Dynamics

    Full text link
    We have studied the kinetics of cluster formation for dynamical systems of dimensions up to n=8n=8 interacting through elastic collisions or coalescence. These systems could serve as possible models for gas kinetics, polymerization and self-assembly. In the case of elastic collisions, we found that the cluster size probability distribution undergoes a phase transition at a critical time which can be predicted from the average time between collisions. This enables forecasting of rare events based on limited statistical sampling of the collision dynamics over short time windows. The analysis was extended to Lp^p-normed spaces (p=1,...,p=1,...,\infty) to allow for some amount of interpenetration or volume exclusion. The results for the elastic collisions are consistent with previously published low-dimensional results in that a power law is observed for the empirical cluster size distribution at the critical time. We found that the same power law also exists for all dimensions n=2,...,8n=2,...,8, 2D Lp^p norms, and even for coalescing collisions in 2D. This broad universality in behavior may be indicative of a more fundamental process governing the growth of clusters

    Spin transfer and current-induced switching in antiferromagnets

    Full text link
    We present theoretical description of the precessional switching processes induced by simultaneous application of spin-polarized current and external magnetic field to antiferromagnetic component of the "pinned" layer. We found stability ranges of different static and dynamic regimes. We showed the possibility of steady current-induced precession of antiferromagnetic vector with frequency that linearly depends on the bias current. Furthermore, we found an optimal duration of current pulse required for switching between different orientations of antiferromagnetic vector and current and field dependence of switching time. Our results reveal the difference between dynamics of ferro- and antiferromagnets subjected to spin transfer torques.Comment: 7 pages, 4 figure

    Generation of linear waves in the flow of Bose-Einstein condensate past an obstacle

    Full text link
    The theory of linear wave structures generated in Bose-Einstein condensate flow past an obstacle is developed. The shape of wave crests and dependence of amplitude on coordinates far enough from the obstacle are calculated. The results are in good agreement with the results of numerical simulations obtained earlier. The theory gives a qualitative description of experiments with Bose-Einstein condensate flow past an obstacle after condensate's release from a trap.Comment: 11 pages, 3 figures, to be published in Zh. Eksp. Teor. Fi
    corecore