277 research outputs found

    Π‘ΠΎΡ€Π±Ρ†ΠΈΠΎΠ½Π½ΠΈ характСристики Π½Π° Π±Ρ€Π°ΡˆΠ½Π΅Π½ΠΈ смСси ΠΎΠ±ΠΎΠ³Π°Ρ‚Π΅Π½ΠΈ с Π±Ρ€Π°ΡˆΠ½ΠΎ ΠΎΡ‚ Π³Ρ€ΠΎΠ·Π΄ΠΎΠ²ΠΈ сСмки ΠΎΡ‚ Π±ΡŠΠ»Π³Π°Ρ€ΡΠΊΠΈ ΠΈ фрСнски суровини

    Get PDF
    The aim of the present scientific research is to study the moisture sorption characteristics of flour mixtures of Bulgarian and French origin. The mixtures are enriched with grape seeds flour in its being an enological residue. Equilibrium moisture content are determined at three different temperatures at 10 Β°C, 25 Β°C and 40Β°C through the standard static gravimetric method in the compulsory presence of water activity within the range from 0.1 to 0.9. The obtained adsorption and desorption isotherms have an S-shape profile i.e. they are from the IInd class typical of the majority of food products. The results confirm a regularity that the sorption capacity decreases with increasing of the temperature in the presence of constant water activity which is valid for both products as well as for both processes (adsorption and desorption). The mathematical modified models of Chung–Pfost, Oswin, Halsey and Henderson are evaluated for the description of the sorption data. The monolayer moisture content (MMC) of flour mixtures is calculated through the linearization of Brunauer-Emmett-Teller equation. For the Bulgarian mixture the values varied from 2.54% to 4.29% and for the French mixture – from 2.67% to 4.13%НастоящитС Π½Π°ΡƒΡ‡Π½ΠΈ изслСдвания сС Π·Π°Π΅ΠΌΠ°Ρ‚ с изслСдванС Π½Π° сорбционнитС характСристики Π½Π° Π±Ρ€Π°ΡˆΠ½Π΅Π½ΠΈ смСси ΠΎΡ‚ Π±ΡŠΠ»Π³Π°Ρ€ΡΠΊΠΈ ΠΈ фрСнски ΠΏΡ€ΠΎΠΈΠ·Ρ…ΠΎΠ΄. БмСситС са ΠΎΠ±ΠΎΠ³Π°Ρ‚Π΅Π½ΠΈ с Π±Ρ€Π°ΡˆΠ½ΠΎ ΠΎΡ‚ Π³Ρ€ΠΎΠ·Π΄ΠΎΠ²ΠΈ сСмки Π² качСството си Π½Π° Π΅Π½ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅Π½ ΠΎΡ‚ΠΏΠ°Π΄ΡŠΠΊ, ΡΡŠΠΎΡ‚Π²Π΅Ρ‚Π½ΠΎ ΠΎΡ‚ Π±ΡŠΠ»Π³Π°Ρ€ΡΠΊΠΈ ΠΈ фрСнски ΠΏΡ€ΠΎΠΈΠ·Ρ…ΠΎΠ΄. РавновСсното Π²Π»Π°Π³ΠΎΡΡŠΠ΄ΡŠΡ€ΠΆΠ°Π½ΠΈΠ΅ сС опрСдСля ΠΏΡ€ΠΈ Ρ‚Ρ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ 10Β°C, 25Β°C ΠΈ 40 Β° C Ρ‡Ρ€Π΅Π· стандартСн статичСн Π³Ρ€Π°Π²ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈ Π²ΠΎΠ΄Π½Π° активност Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° ΠΎΡ‚ 0,1 Π΄ΠΎ 0,9. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΡ‚Π΅ ΠΈΠ·ΠΎΡ‚Π΅Ρ€ΠΌΠΈ ΠΈΠΌΠ°Ρ‚ S-ΠΎΠ±Ρ€Π°Π·Π΅Π½ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€, Ρ‚.Π΅. Ρ‚Π΅ са ΠΎΡ‚ II Ρ‚ΠΈΠΏ, Ρ‚ΠΈΠΏΠΈΡ‡Π΅Π½ Π·Π° ΠΏΠΎΠ²Π΅Ρ‡Π΅Ρ‚ΠΎ Ρ…Ρ€Π°Π½ΠΈΡ‚Π΅Π»Π½ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈ. Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΡ‚Π΅ ΠΏΠΎΡ‚Π²ΡŠΡ€ΠΆΠ΄Π°Π²Π°Ρ‚ закономСрността, Ρ‡Π΅ сорбционният ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚ намалява с ΠΏΠΎΠ²ΠΈΡˆΠ°Π²Π°Π½Π΅Ρ‚ΠΎ Π½Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ‚Π° Π² условията Π½Π° константна Π²ΠΎΠ΄Π½Π° активност, Π²Π°Π»ΠΈΠ΄Π½Π° ΠΈ Π·Π° Π΄Π²Π°Ρ‚Π° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ ΠΏΡ€ΠΈ Π΄Π²Π°Ρ‚Π° процСса (адсорбция ΠΈ дСсорбция). Π—Π° описаниС Π½Π° сорбционнитС ΠΈΠ·ΠΎΡ‚Π΅Ρ€ΠΌΠΈ сС ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Ρ‚ матСматичСскитС ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€Π°Π½ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° Chung – Pfost, Oswin, Halsey ΠΈ Henderson. ΠœΠΎΠ½ΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π½Π°Ρ‚Π° влаТност Π½Π° Π±Ρ€Π°ΡˆΠ½Π΅Π½ΠΈΡ‚Π΅ смСси сС изчислява Ρ‡Ρ€Π΅Π· линСаризация Π½Π° ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅Ρ‚ΠΎ Π½Π° Π‘Ρ€ΡƒΠ½Π°ΡƒΠ΅Ρ€Π•ΠΌΠ΅Ρ‚-Π’Π΅Π»Π΅Ρ€. Π—Π° Π±ΡŠΠ»Π³Π°Ρ€ΡΠΊΠ°Ρ‚Π° смСс стойноститС Π²Π°Ρ€ΠΈΡ€Π°Ρ‚ ΠΎΡ‚ 2,54% Π΄ΠΎ 4,29%, Π° Π·Π° фрСнската смСс - Π²Π°Ρ€ΠΈΡ€Π°Ρ‚ ΠΎΡ‚ 2,67% Π΄ΠΎ 4,13

    Nucleation activity of glass fibers towards iPP evaluated by DSC and polarizing light microscopy

    Get PDF
    Nucleation activity of unsized and differently sized glass fibers during the crystallization of polypropylene from melt was investigated by polarizing light microscopy and DSC. Depending on the type of surface treatment, glass fibers were shown to exhibit different nucleating effects, evaluated by induction time of crystallization, crystallization onset temperature as well as half-time of crystallization in model composites with 50% wt glass fibers. Predominant nucleation activity was found for glass fibers sized with polypropylene compatible dispersion containing polyurethanes. However, according to the results of DSC measurements, unsized glass fibers slightly depressed the nucleation of polypropylene. Using the approach of Dobreva et al., the activity of the fibers towards heterogeneous nucleation during nonisothermal crystallization was evaluated

    Utilization of recycled polymer matrices for production of eco-composites

    Get PDF
    Abstract: One of the big new areas of development of the advanced composite materials is in combining natural fi bers with thermoplastics for producing lightweight, environmentally friendly, cost-effective composite material. The aim of this work is to show the possibilities of recycling and reuse of thermoplastic polymer matrices with rice hulls (RH) and kenaf fi bres (KF) using the conventional techniques, extrusion and compression moulding. The matrices (polypropylene (PP) and poly(lactic) acid (PLA) ) were recycled one and two times and the fi bers/fi ller were compounded with recycled matrix. The processing and material properties have been studied on the composites with recycled matrix and compared to the composites with virgin matrix. Characterization of all composites includes mechanical, morphological and thermo-gravimetrical analysis. Π’he fl exural properties for PP recycled based composites were held close to the fl exural properties for composite based on neat PP, but for PLA recycled based composite the fl exural properties are decreased for about 50%. The thermal stability of recycled matrices based composites is very similar to the thermal stability of the composites with virgin matrix. SEM analysis has shown that the fi llers/fi bers are covered by the recycled polymer matrix, indicated on the satisfi ed durability of the recycled polymer matrices. The obtained results have shown that both polymer matrices (biodegradable and no degradable) could be recycled with acceptable mechanical properties and they can be successfully used for production of eco-composites. Keywords: eco-composites, polypropylene, poly(lactic acid), rice hulls, kenaf fi bers, extrusion compressio

    Biocomposites based on poly(lactic acid) and kenaf fibers: effect of microfibrillated cellulose

    Get PDF
    In this work, the influence of microfibrillated cellulose (MFC) on the basic mechanical properties of PLA/kenaf fiber biocomposites has been studied. The addition of 5–15 % microfibrillated cellulose to a biocomposite premix has resulted in an increased glass transition temperature of the final product, produced by compression molding of previously melt-mixed composite components. The presence of MFC has influenced the interface-sensitive properties of the PLA/kenaf composite: at an optimal loading of 10 %, the interfacial energy release rate was increased by about 20 %. Moreover, flexural strength and modulus of the composites were also improved (from 34.8 MPa to 57.1 MPa and from 4.9 GPa to 5.8 GPa, respectively). Keywords: biocomposites; poly(lactic acid); kenaf fibers; microfibrillated cellulos

    Π₯омоцистСинот – Ρ€ΠΈΠ·ΠΈΠΊ Ρ„Π°ΠΊΡ‚ΠΎΡ€ ΠΈ ΠΏΡ€Π΅Π΄ΠΈΠΊΡ‚ΠΎΡ€ Π²ΠΎ ΠΏΠΎΡ˜Π°Π²Π°Ρ‚Π° Π½Π° васкуларнитС ΠΊΠΎΠΌΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ кај ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈΡ‚Π΅ со Π΄ΠΈΡ˜Π°Π±Π΅Ρ‚Π΅Ρ мСлитус Ρ‚ΠΈΠΏ 2

    Get PDF
    BACKGROUND: Homocysteine (HCY) is a sulphur containing amino acid. The entire amount of homocysteine in the body is formed through the cycle of methylation of the amino acid methionine, as the primary and only source of homocysteine. The plasma free HCY is only 1%, while 70% is bound to albumin. The metabolism of HCY involves three enzymes: methionine synthase (MS) methylenetetrahydrofolate reductase (MTHFR), cystathionine B synthase (CBS) and the vitamins B6, B12 and folic acid as cofactors of these enzymes. In case of metabolic disturbance of the metabolism of HCY due to enzymatic defect or because of lack of intracellular cofactor, HCY accumulates in the cells, after which it is excreted from the cells and its plasma levels rise. AIM: The purpose of this study is to obtain data that would prove the correlation of plasma homocysteine regarding the etiology of the microvascular and macrovascular complications of diabetes and the possibility of its use as an early predictor in the diagnosis of vascular complications in patients with diabetes mellitus. METHODS: This paper is a retrospective-prospective study conducted at the Clinic for Endocrinology, Diabetes and Metabolic Diseases in Skopje. The study have included 80 patients with diabetes mellitus 2. Patients who are recruited were divided into two groups: 50 patients diagnosed with vascular complications and a group of 30 patients without associated complications, which will be the control group. The test group of patients will be made up of patients with type 2 diabetes mellitus, with confirmed diagnosis and treated with insulin and oral treatment. RESULTS: From the preliminary results of the microvascular complications the most frequent and statistically significant is the prevalence of the nephropathy with 32%. Retinopathy was represented with 29 % and microalbuminuria was detected in 27.5% of the patients. Among the macrovascular complications 31 % of the patients were diagnosed with arterial hypertension and 12.50% with peripheral arterial diseases. In the present study higher levels of homocysteine were detected in group of diabetic subjects with microvascular and macrovascular complications comparing to control group of patients where no complications were diagnosed and levels of homocysteine were among reference ranges. CONCLUSION: Hiperhomocisteinemia represents a risk factor in etiology of chronic complications in patients with diabetes mellitus type 2. However, further research would provide clear evidence of the impact of increased levels of homocysteine and its role in damage to the endothelium of blood vessels and the emergence of long-term vascular complications.ΠžΠ‘ΠΠžΠ’Π: Π₯омоцистСинот (Нсу) Π΅ Π°ΠΌΠΈΠ½ΠΎ кисСлина која содрТи сулфур. Π¦Π΅Π»ΠΎΡ‚ΠΎ количСство Π½Π° хомоцистСин Π²ΠΎ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΡ‚ сС Ρ„ΠΎΡ€ΠΌΠΈΡ€Π° ΠΏΡ€Π΅ΠΊΡƒ циклусот Π½Π° ΠΌΠ΅Ρ‚ΠΈΠ»Ρ†ΠΈΡ˜Π° ΠΎΠ΄ аминокисСлината ΠΌΠ΅Ρ‚ΠΈΠΎΠ½ΠΈΠ½, ΠΊΠ°ΠΊΠΎ основСн ΠΈ СдинствСн ΠΈΠ·Π²ΠΎΡ€ Π½Π° хомоцистСин. Π’ΠΎ ΠΏΠ»Π°Π·ΠΌΠ°Ρ‚Π° Нсу сС Π½Π°ΠΎΡ“Π° слободСн само 1%, Π΄ΠΎΠ΄Π΅ΠΊΠ° 70% сС Π½Π°ΠΎΡ“Π° Π²Ρ€Π·Π°Π½ Π·Π° Π°Π»Π±ΡƒΠΌΠΈΠ½ΠΈΡ‚Π΅. Π’ΠΎ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠΎΡ‚ Π½Π° Нсу сС ΠΈΠ½Π²ΠΎΠ»Π²ΠΈΡ€Π°Π½ΠΈ Ρ‚Ρ€ΠΈ Π΅Π½Π·ΠΈΠΌΠΈ: ΠΌΠ΅Ρ‚ΠΈΠΎΠ½ΠΈΠ½ синтаза (МБ), ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Ρ‚Π΅Ρ‚Ρ€ΠΈΡ…ΠΈΠ΄Ρ€Π°Ρ„ΠΎΠ»Π°Ρ‚ Ρ€Π΅Π΄ΡƒΠΊΡ‚Π°Π·Π° (МВΠ₯Π€Π ), цистатионин Π‘ сСнтитаза (Π¦Π‘Π‘) ΠΊΠ°ΠΊΠΎ ΠΈ Π²ΠΈΡ‚Π°ΠΌΠΈΠ½ΠΈΡ‚Π΅ B6, B12 ΠΈ Ρ„ΠΎΠ»Π½Π°Ρ‚Π° кисСлина, ΠΊΠ°ΠΊΠΎ ΠΊΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€ΠΈ Π½Π° ΠΎΠ²ΠΈΠ΅ Π΅Π½Π·ΠΈΠΌΠΈ. Π’ΠΎ ΡΠ»ΡƒΡ‡Π°Ρ˜ Π½Π° Π½Π°Ρ€ΡƒΡˆΡƒΠ²Π°ΡšΠ΅ Π½Π° ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠΎΡ‚ Π½Π° хомоцистСинот ΠΏΠΎΡ€Π°Π΄ΠΈ Снзимски Π΄Π΅Ρ„Π΅ΠΊΡ‚ ΠΈΠ»ΠΈ ΠΏΠΎΡ€Π°Π΄ΠΈ нСдостиг Π½Π° нСкој ΠΈΠ½Ρ‚Ρ€Π°Ρ†Π΅Π»ΡƒΠ»Π°Ρ€Π΅Π½ ΠΊΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€, Π΄ΠΎΠ°Ρ“Π° Π΄ΠΎ Π°ΠΊΡƒΠΌΡƒΠ»ΠΈΡ€Π°ΡšΠ΅ Π½Π° Нсу Π²ΠΎ ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ‚Π° ΠΈ ΠΏΠΎΡ‚ΠΎΠ° Π΄ΠΎ Π½Π΅Π³ΠΎΠ²ΠΎ Π΅ΠΊΡΠΊΡ€Π΅Ρ‚ΠΈΡ€Π°ΡšΠ΅ ΠΈ Π·Π³ΠΎΠ»Π΅ΠΌΡƒΠ²Π°ΡšΠ΅ Π½Π° Π½ΠΈΠ²ΠΎΠ°Ρ‚Π° Π²ΠΎ Ρ†ΠΈΡ€ΠΊΡƒΠ»Π°Ρ†ΠΈΡ˜Π°Ρ‚Π°. Π¦Π•Π›: Π¦Π΅Π»Ρ‚Π° Π½Π° ΠΎΠ²Π° ΠΈΡΡ‚Ρ€Π°ΠΆΡƒΠ²Π°ΡšΠ΅ Π΅ Π΄Π° сС Π΄ΠΎΠ±ΠΈΡ˜Π°Ρ‚ ΠΏΠΎΠ΄Π°Ρ‚ΠΎΡ†ΠΈ со ΠΊΠΎΠΈ Π±ΠΈ сС Π΄ΠΎΠΊΠ°ΠΆΠ°Π»Π° ΠΊΠΎΡ€Π΅Π»Π°Ρ†ΠΈΡ˜Π°Ρ‚Π° Π½Π° ΠΏΠ»Π°Π·ΠΌΠ° хомоцистСинот Π²ΠΎ однос Π½Π° Π΅Ρ‚ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ˜Π°Ρ‚Π° Π½Π° микроваскуларнитС ΠΈ макроваскуларнитС ΠΊΠΎΠΌΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΊΠ°ΠΊΠΎ ΠΈ моТноста Π·Π° Π½Π΅Π³ΠΎΠ²Π° ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π° ΠΊΠ°ΠΊΠΎ Ρ€Π°Π½ ΠΏΡ€Π΅Π΄ΠΈΠΊΡ‚ΠΎΡ€ Π²ΠΎ Π΄ΠΈΡ˜Π°Π³Π½ΠΎΡΡ‚ΠΈΠΊΠ°Ρ‚Π° Π½Π° васкуларнитС ΠΊΠΎΠΌΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ кај ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈΡ‚Π΅ со Π΄ΠΈΡ˜Π°Π±Π΅Ρ‚Π΅Ρ мСлитус. ΠœΠ•Π’ΠžΠ”Π˜: Π’Ρ€ΡƒΠ΄ΠΎΡ‚ прСтставува рСтроспСктивно-проспСктивно ΠΈΡΡ‚Ρ€Π°ΠΆΡƒΠ²Π°ΡšΠ΅ ΠΊΠΎΠ΅ сС одвивашС Π½Π° ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ°Ρ‚Π° Π·Π° Π΅Π½Π΄ΠΎΠΊΡ€ΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° ΠΈ болСсти Π½Π° ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠΎΡ‚ Π²ΠΎ БкопјС. Π‘Ρ‚ΡƒΠ΄ΠΈΡ˜Π°Ρ‚Π° Π²ΠΊΠ»ΡƒΡ‡ΠΈ 80 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ со Π΄ΠΈΡ˜Π°Π±Π΅Ρ‚Π΅Ρ мСлитус 2. Π Π΅Π³Ρ€ΡƒΡ‚ΠΈΡ€Π°Π½ΠΈΡ‚Π΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ Π±Π΅Π° ΠΏΠΎΠ΄Π΅Π»Π΅Π½ΠΈ Π²ΠΎ Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΈ: 50 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ со Π΄ΠΈΡ˜Π°Π³Π½ΠΎΡΡ‚ΠΈΡ†ΠΈΡ€Π°Π½ΠΈ васкуларни ΠΊΠΎΠΌΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ Π³Ρ€ΡƒΠΏΠ° ΠΎΠ΄ 30 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ Π±Π΅Π· ΠΏΡ€ΠΈΠ΄Ρ€ΡƒΠΆΠ½ΠΈ ΠΊΠΎΠΌΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ, која Π²ΠΎΠ΅Π΄Π½ΠΎ Π΅ ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π½Π° Π³Ρ€ΡƒΠΏΠ°. Π Π•Π—Π£Π›Π’ΠΠ’Π˜: Од ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ°Ρ‚Π° Π½Π° ΠΏΠΎΠ΄Π°Ρ‚ΠΎΡ†ΠΈΡ‚Π΅, ΠΏΠΎΠΌΠ΅Ρ“Ρƒ микроваскуларнитС ΠΊΠΎΠΌΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ сигнификантно Π½Π°Ρ˜Π·Π°ΡΡ‚Π°ΠΏΠ΅Π½Π° бСшС Π½Π΅Ρ„Ρ€ΠΎΠΏΠ°Ρ‚ΠΈΡ˜Π°Ρ‚Π° со 32%, ΠΏΠΎΡ‚ΠΎΠ° Ρ€Π΅Ρ‚ΠΈΠ½ΠΎΠΏΠ°Ρ‚ΠΈΡ˜Π°Ρ‚Π° со 29% ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ°Π»Π±ΡƒΠΌΠΈΠ½ΡƒΡ€ΠΈΡ˜Π°Ρ‚Π° со 27.5%. Од макроваскуларнитС ΠΊΠΎΠΌΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ сигнификантно ΠΈ Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ Π½Π°Ρ˜Π·Π°ΡΡ‚Π°ΠΏΠ΅Π½ΠΈ Π±Π΅Π° Ρ…ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ²Π½Π°Ρ‚Π° болСст со ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΡƒΠ°Π»Π½Π° застапСност ΠΎΠ΄ 31%, ΠΈ ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€Π½Π°Ρ‚Π° артСриска болСст со 12.50%. Високи врСдности Π½Π° хомоцистСин Π±Π΅Π° Π½ΠΎΡ‚ΠΈΡ€Π°Π½ΠΈ кај Π΄Π²Π΅Ρ‚Π΅ Π³Ρ€ΡƒΠΏΠΈΡ‚Π΅ Π½Π° ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ со микроваскуларни ΠΈ макроваскуларни ΠΊΠΎΠΌΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π²ΠΎ однос Π½Π° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π½Π°Ρ‚Π° Π³Ρ€ΡƒΠΏΠ° Π½Π° ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ, ΠΊΠ°Π΄Π΅ врСдноститС Π½Π° хомоцистСин Π±Π΅Π° ΠΏΠΎΠΌΠ΅Ρ“Ρƒ Π½ΠΎΡ€ΠΌΠ°Π»Π½ΠΈΡ‚Π΅ Π³Ρ€Π°Π½ΠΈΡ†ΠΈ. Π—ΠΠšΠ›Π£Π§ΠžΠš: Π₯ΠΈΠΏΠ΅Ρ€Ρ…ΠΎΠΌΠΎΡ†ΠΈΡΡ‚Π΅ΠΈΠ½Π΅ΠΌΠΈΡ˜Π°Ρ‚Π° прСтставува Ρ€ΠΈΠ·ΠΈΠΊ Ρ„Π°ΠΊΡ‚ΠΎΡ€ Π²ΠΎ Π΅Ρ‚ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ˜Π°Ρ‚Π° Π½Π° Ρ…Ρ€ΠΎΠ½ΠΈΡ‡Π½ΠΈ ΠΊΠΎΠΌΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ кај ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈΡ‚Π΅ со Π΄ΠΈΡ˜Π°Π±Π΅Ρ‚Π΅Ρ мСлитус Ρ‚ΠΈΠΏ 2. Π‘Π΅ΠΏΠ°ΠΊ, ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΈ сС ΠΏΠΎΠ½Π°Ρ‚Π°ΠΌΠΎΡˆΠ½ΠΈ ΠΈΡΡ‚Ρ€Π°ΠΆΡƒΠ²Π°ΡšΠ° ΠΊΠΎΠΈ Π±ΠΈ Π΄Π°Π»Π΅ јасни ΠΏΠΎΠ΄Π°Ρ‚ΠΎΡ†ΠΈ Π·Π° Π²Π»ΠΈΡ˜Π°Π½ΠΈΠ΅Ρ‚ΠΎ Π½Π° Π·Π³ΠΎΠ»Π΅ΠΌΠ΅Π½ΠΈΡ‚Π΅ Π½ΠΈΠ²ΠΎΠ° Π½Π° хомоцистСин ΠΈ Π½Π΅Π³ΠΎΠ²Π°Ρ‚Π° ΡƒΠ»ΠΎΠ³Π° Π²ΠΎ ΠΎΡˆΡ‚Π΅Ρ‚ΡƒΠ²Π°ΡšΠ΅Ρ‚ΠΎ Π½Π° Π΅Π½Π΄ΠΎΡ‚Π΅Π»ΠΎΡ‚ Π½Π° ΠΊΡ€Π²Π½ΠΈΡ‚Π΅ садови ΠΈ појава Π½Π° Π΄ΠΎΠ»Π³ΠΎΡ‚Ρ€Π°Ρ˜Π½ΠΈ васкуларни ΠΊΠΎΠΌΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ

    Isothermal crystallization of iPP in model glass‐fiber composites

    Get PDF
    : Isothermal crystallization of iPP in model glass-fiber composites is studied by DSC, and the basic energetic parameters of crystallization are determined. Unsized untreated and thermally treated glass fibers are used in model composites to determine the role of the surface on nucleation and crystallization processes. Thermally treated glass fibers are found to exhibit a predominant nucleating effect as compared to unsized untreated ones, and the crystallization proceeds faster, resulting in lower values for the half-time of crystallization (10–120 s). The energy of formation of a nuclei of critical dimensions at a given Tc is also lower, and it decreases as the content of the fibers in the composite increases. The surface free energy of folding, Οƒe = 140 Γ— 10βˆ’3 J/m2, was determined for iPP in the composite containing 50% glass fibers, while for pure iPP, Οƒe = 170 Γ— 10βˆ’3J/m2 was found
    • …
    corecore