300 research outputs found
Space of State Vectors in PT Symmetrical Quantum Mechanics
Space of states of PT symmetrical quantum mechanics is examined. Requirement
that eigenstates with different eigenvalues must be orthogonal leads to the
conclusion that eigenfunctions belong to the space with an indefinite metric.
The self consistent expressions for the probability amplitude and average value
of operator are suggested. Further specification of space of state vectors
yield the superselection rule, redefining notion of the superposition
principle. The expression for the probability current density, satisfying
equation of continuity and vanishing for the bound state, is proposed.Comment: Revised version, explicit expressions for average values and
probability amplitude adde
Common Space of Spin and Spacetime
Given Lorentz invariance in Minkowski spacetime, we investigate a common
space of spin and spacetime. To obtain a finite spinor representation of the
non-compact homogeneous Lorentz group including Lorentz boosts, we introduce an
indefinite inner product space (IIPS) with a normalized positive probability.
In this IIPS, the common momentum and common variable of a massive fermion turn
out to be ``doubly strict plus-operators''. Due to this nice property, it is
straightforward to show an uncertainty relation between fermion mass and proper
time. Also in IIPS, the newly-defined Lagrangian operators are self-adjoint,
and the fermion field equations are derivable from the Lagrangians. Finally,
the nonlinear QED equations and Lagrangians are presented as an example.Comment: 17 pages, a reference corrected, final version published on
Foundations of Physics Letters in June of 2005, as a personal tribute to
Einstein and Dira
Pseudo-Hermitian Hamiltonians, indefinite inner product spaces and their symmetries
We extend the definition of generalized parity , charge-conjugation
and time-reversal operators to nondiagonalizable pseudo-Hermitian
Hamiltonians, and we use these generalized operators to describe the full set
of symmetries of a pseudo-Hermitian Hamiltonian according to a fourfold
classification. In particular we show that and are the generators of
the antiunitary symmetries; moreover, a necessary and sufficient condition is
provided for a pseudo-Hermitian Hamiltonian to admit a -reflecting
symmetry which generates the -pseudounitary and the -pseudoantiunitary
symmetries. Finally, a physical example is considered and some hints on the
-unitary evolution of a physical system are also given.Comment: 20 page
Resummation of mass terms in perturbative massless quantum field theory
The neutral massless scalar quantum field in four-dimensional
space-time is considered, which is subject to a simple bilinear
self-interaction. Is is well-known from renormalization theory that adding a
term of the form to the Lagrangean has the formal
effect of shifting the particle mass from the original zero value to m after
resummation of all two-leg insertions in the Feynman graphs appearing in the
perturbative expansion of the S-matrix. However, this resummation is
accompanied by some subtleties if done in a proper mathematical manner.
Although the model seems to be almost trivial, is shows many interesting
features which are useful for the understanding of the convergence behavior of
perturbation theory in general. Some important facts in connection with the
basic principles of quantum field theory and distribution theory are
highlighted, and a remark is made on possible generalizations of the
distribution spaces used in local quantum field theory. A short discussion how
one can view the spontaneous breakdown of gauge symmetry in massive gauge
theories within a massless framework is presented.Comment: 15 pages, LaTeX (style files included), one section adde
Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri
The development of systemic approaches in biology has put emphasis on
identifying genetic modules whose behavior can be modeled accurately so as to
gain insight into their structure and function. However most gene circuits in a
cell are under control of external signals and thus quantitative agreement
between experimental data and a mathematical model is difficult. Circadian
biology has been one notable exception: quantitative models of the internal
clock that orchestrates biological processes over the 24-hour diurnal cycle
have been constructed for a few organisms, from cyanobacteria to plants and
mammals. In most cases, a complex architecture with interlocked feedback loops
has been evidenced. Here we present first modeling results for the circadian
clock of the green unicellular alga Ostreococcus tauri. Two plant-like clock
genes have been shown to play a central role in Ostreococcus clock. We find
that their expression time profiles can be accurately reproduced by a minimal
model of a two-gene transcriptional feedback loop. Remarkably, best adjustment
of data recorded under light/dark alternation is obtained when assuming that
the oscillator is not coupled to the diurnal cycle. This suggests that coupling
to light is confined to specific time intervals and has no dynamical effect
when the oscillator is entrained by the diurnal cycle. This intringuing
property may reflect a strategy to minimize the impact of fluctuations in
daylight intensity on the core circadian oscillator, a type of perturbation
that has been rarely considered when assessing the robustness of circadian
clocks
MOST light-curve analysis of the Îł Doradus pulsator HR 8799, showing resonances and amplitude variations
Context. The central star of the HR 8799 system is a Îł Doradus-type pulsator. The system harbours four planetary-mass companions detected by direct imaging, and is a good solar system analogue. The masses of the companions are not accurately known because the estimation depends greatly on the age of the system, which is also not known with sufficient accuracy. Asteroseismic studies of the star might help to better constrain the age of HR 8799. We organized an extensive photometric and multi-site spectroscopic observing campaign to study the pulsations of the central star. Aims: The aim of the present study is to investigate the pulsation properties of HR 8799 in detail via the ultra-precise 47 d nearly continuous photometry obtained with the Microvariability and Oscillations in STars (MOST) space telescope, and to find as many independent pulsation modes as possible, which is the prerequisite for an asteroseismic age determination. Methods: We carried out Fourier analysis of the wide-band photometric time series. Results: We find that resonance and sudden amplitude changes characterize the pulsation of HR 8799. The dominant frequency is always at f1 = 1.978 d-1.Many multiples of one-ninth of the dominant frequency appear in the Fourier spectrum of the MOST data: n/9 f1, where n = {1,2,3,4,5,6,7,8,9,10,13,14,17,18}. Our analysis also reveals that many of these peaks show strong amplitude decrease and phase variations even on the 47 d time scale. The dependencies between the pulsation frequencies of HR 8799 make the planned subsequent asteroseismic analysis rather difficult. We point out some resemblance between the light curve of HR 8799 and the modulated pulsation light curves of Blazhko RR Lyrae stars. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna
Role of the electro-thermo-mechanical multiple coupling on the operation of RF microswitch
A phenomenological approach is proposed to identify some effects occurring within the structure of the microswitch conceived for radio frequency application. This microsystem is operated via a nonlinear electromechanical action imposed by the applied voltage. Unfortunately, it can be affected by residual stress, due to the microfabrication process, therefore axial and flexural behaviors are strongly coupled. This coupling increases the actuation voltage required to achieve the so-called ââpull-in'' condition. Moreover, temperature may strongly affect strain and stress distributions, respectively. Environmental temperature, internal dissipation of material, thermo-elastic and Joule effects play different roles on the microswitch flexural isplacement. Sometimes buckling phenomenon evenly occurs. Literature show that all those issues make difficult an effective computation of ââpull-in'' and ââpull-out'' voltages for evenly distinguishing the origin of some failures detected in operation. Analysis, numerical methods and experiments are applied to an industrial test case to investigate step by step the RF-microswitch operation. Multiple electro-hermomechanical coupling is first modeled to have a preliminary and comprehensive description of the microswitch behavior and of its reliability. ââPull-in'' and ââpull-out'' tests are then performed to validate the proposed models and to find suitable criteria to design the RF-MEM
- âŠ