26 research outputs found

    Evaluation of IL-28B Polymorphisms and Serum IP-10 in Hepatitis C Infected Chimpanzees

    Get PDF
    In humans, clearance of hepatitis C virus (HCV) infection is associated with genetic variation near the IL-28B gene and the induction of interferon-stimulated genes, like IP-10. Also in chimpanzees spontaneous clearance of HCV is observed. To study whether similar correlations exist in these animals, a direct comparison of IP-10 and IL-28B polymorphism between chimpanzees and patients was performed. All chimpanzees studied were monomorphic for the human IL-28B SNPs which are associated with spontaneous and treatment induced HCV clearance in humans. As a result, these particular SNPs cannot be used for clinical association studies in chimpanzees. Although these human SNPs were absent in chimpanzees, gene variation in this region was present however, no correlation was observed between different SNP-genotypes and HCV outcome. Strikingly, IP-10 levels in chimpanzees correlated with HCV-RNA load and γGT, while such correlations were not observed in humans. The correlation between IP-10, γGT and virus load in chimpanzees was not found in patients and may be due to the lack of lifestyle-related confounding factors in chimpanzees. Direct comparison of IP-10 and IL-28B polymorphism between chimpanzees and patients in relation to HCV infection, illustrates that the IFN-pathways are important during HCV infection in both species. The Genbank EMBL accession numbers assigned to chimpanzees specific sequences near the IL-28B gene are HE599784 and HE599785

    Increased, Durable B-Cell and ADCC Responses Associated with T-Helper Cell Responses to HIV-1 Envelope in Macaques Vaccinated with gp140 Occluded at the CD4 Receptor Binding Site.

    Get PDF
    Strategies are needed to improve the immunogenicity of HIV-1 envelope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized that Env engagement of the CD4 receptor on T-helper cells results in anergic effects on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140 by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation of gp140 on CD4+ T cells while preserving CD4-inducible (CDi) neutralizing epitopes targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Importantly, immunization of rhesus macaques consistently gave superior B-cell (P < 0.001) response kinetics and superior ADCC (P < 0.014) in a group receiving the CD4bs-occluded vaccine compared to those of animals immunized with gp140. Of the cytokines examined, Ag-specific interleukin-4 (IL-4) T-helper enzyme-linked immunosorbent spot (ELISpot) assays of the CD4bs-occluded group increased earlier (P = 0.025) during the inductive phase. Importantly, CD4bs-occluded gp140 antigen induced superior B-cell and ADCC responses, and the elevated B-cell responses proved to be remarkably durable, lasting more than 60 weeks postimmunization.IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell development and affinity maturation occurs in germinal centers in lymphoid follicles through a critical interaction between B cells and T follicular helper cells. The HIV envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-antibody complexes, causing impairment in the activation of these specialized CD4-positive T cells. We proposed that CD4-binding impairment is partly responsible for the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hypothesis, we blocked the CD4 binding site of the envelope antigen and compared it to currently used unblocked envelope protein. We found superior and durable B-cell responses in macaques vaccinated with an occluded CD4 binding site on the HIV envelope antigen, demonstrating a potentially important new direction in future design of new HIV vaccines.Wellcome Trust NI

    Protection in Macaques Immunized with HIV-1 Candidate Vaccines Can Be Predicted Using the Kinetics of Their Neutralizing Antibodies

    Get PDF
    A vaccine is needed to control the spread of human immunodeficiency virus type 1 (HIV-1). An in vitro assay that can predict the protection induced by a vaccine would facilitate the development of such a vaccine. A potential candidate would be an assay to quantify neutralization of HIV-1.We have used sera from rhesus macaques that have been immunized with HIV candidate vaccines and subsequently challenged with simian human immunodeficiency virus (SHIV). We compared neutralization assays with different formats. In experiments with the standardized and validated TZMbl assay, neutralizing antibody titers against homologous SHIV(SF162P4) pseudovirus gave a variable correlation with reductions in plasma viremia levels. The target cells used in the assays are not just passive indicators of virus infection but are actively involved in the neutralization process. When replicating virus was used with GHOST cell assays, events during the absorption phase, as well as the incubation phase, determine the level of neutralization. Sera that are associated with protection have properties that are closest to the traditional concept of neutralization: the concentration of antibody present during the absorption phase has no effect on the inactivation rate. In GHOST assays, events during the absorption phase may inactivate a fixed number, rather than a proportion, of virus so that while complete neutralization can be obtained, it can only be found at low doses particularly with isolates that are relatively resistant to neutralization.Two scenarios have the potential to predict protection by neutralizing antibodies at concentrations that can be induced by vaccination: antibodies that have properties close to the traditional concept of neutralization may protect against a range of challenge doses of neutralization sensitive HIV isolates; a window of opportunity also exists for protection against isolates that are more resistant to neutralization but only at low challenge doses

    Correction:How the COVID-19 pandemic highlights the necessity of animal research (vol 30, pg R1014, 2020)

    Get PDF
    (Current Biology 30, R1014–R1018; September 21, 2020) As a result of an author oversight in the originally published version of this article, a number of errors were introduced in the author list and affiliations. First, the middle initials were omitted from the names of several authors. Second, the surname of Dr. van Dam was mistakenly written as “Dam.” Third, the first name of author Bernhard Englitz was misspelled as “Bernard” and the surname of author B.J.A. Pollux was misspelled as “Pullox.” Finally, Dr. Keijer's first name was abbreviated rather than written in full. These errors, as well as various errors in the author affiliations, have now been corrected online

    Spontaneous and natural cytotoxicity receptor-mediated cytotoxicity are effector functions of distinct natural killer subsets in hepatitis C virus-infected chimpanzees

    No full text
    In humans, CD16 and CD56 are used to identify functionally distinct natural killer (NK) subsets. Due to ubiquitous CD56 expression, this marker cannot be used to distinguish between NK cell subsets in chimpanzees. Therefore, functional analysis of distinct NK subsets during hepatitis C virus (HCV) infection has never been performed in these animals. In the present study an alternative strategy was used to identify four distinct NK subsets on the basis of the expression of CD16 and CD94. The expression of activating and inhibiting surface receptors showed that these subsets resemble human NK subsets. CD107 expression was used to determine degranulation of the different subsets in n

    Influenza a virus hemagglutinin trimer, head and stem proteins identify and quantify different hemagglutinin-specific b cell subsets in humans

    No full text
    Antibody responses against the influenza A virus hemagglutinin (HA)-protein are studied intensively because they can protect against (re)infection. Previous studies have focused on antibodies targeting the head or stem domains, while other possible specificities are often not taken into account. To study such specificities, we developed a diverse set of HA-domain proteins based on an H1N1pdm2009-like influenza virus strain, including monomeric head and trimeric stem domain, as well as the full HA-trimer. These proteins were used to study the B cell and antibody responses in six healthy human donors. A large proportion of HA-trimer B cells bound exclusively to HA-trimer probe (54–77%), while only 8–18% and 9–23% were able to recognize the stem or head probe, respectively. Monoclonal antibodies (mAbs) were isolated and three of these mAbs, targeting the different domains, were characterized in-depth to confirm the binding profile observed in flow cytometry. The head-directed mAb, targeting an epitope distinct from known head-specific mAbs, showed relatively broad H1N1 neutralization and the stem-directed mAb was able to broadly neutralize diverse H1N1 viruses. Moreover, we identified a trimer-directed mAb that did not compete with known head or stem domain specific mAbs, suggesting that it targets an unknown epitope or conformation of influenza virus’ HA. These observations indicate that the described method can characterize the diverse antibody response to HA and might be able to identify HA-specific B cells and antibodies with previously unknown specificities that could be relevant for vaccine design

    Qualitative T-Helper Responses to Multiple Viral Antigens Correlate with Vaccine-Induced Immunity to Simian/Human Immunodeficiency Virus Infection

    No full text
    Evidence is accumulating that CD4(+) T-helper (Th) responses play a critical role in facilitating effector responses which are capable of controlling and even preventing human immunodeficiency virus (HIV) infection. The present work was undertaken to determine whether immunization with multiple antigens influenced individual Th responses and increased protection relative to a single antigen. Rhesus macaques were primed with DNA and boosted (immune-stimulating complex-formulated protein) with a combination of regulatory and structural antigens (Tat-Env-Gag) or with Tat alone. Immunization with combined antigens reduced the magnitude of the responses to Tat compared to the single-antigen immunization. Interestingly, the Th immune responses to the individual antigens were noticeably different. To determine whether the qualitative differences in vaccine-induced Th responses correlated with vaccine efficacy, animals were challenged intravenously with simian/human immunodeficiency virus (strain SHIV(89.6p)) 2 months following the final immunization. Animals that developed combined Th1- and Th2-like responses to Gag and Th2 dominant Env-specific responses were protected from disease progression. Interestingly, one animal that was completely protected from infection had the strongest IFN-γ and interleukin-2 (IL-2) responses prior to challenge, in addition to very strong IL-4 responses to Gag and Env. In contrast, animals with only a marked vaccine-induced Tat-specific Th2 response (no IFN-γ) were not protected from infection or disease. These data support the rationale that effective HIV vaccine-induced immunity requires a combination of potent Th1- and Th2-like responses best directed to multiple antigens

    A) Maximum likelihood phylogenetic tree of the envelope gene of the virus inoculum.

    No full text
    <p>The scale bar represents one nucleotide substitution. <b>B) Frequency of each inoculum variant at the amino acid level.</b> The number of each viral genome present within the inoculum was estimated based on the amino acid sequence (black bars) and at the nucleotide level (grey bars).</p

    T-cell ELISpot responses 2 weeks after the last immunization.

    No full text
    <p>Positive IFN-γ, IL-2 and IL-4 ELISPots per million cells are shown for each animal after stimulation with full-length recombinant proteins of clades A, B and C and V2-V3 peptides of clades B and C once 2 background responses were subtracted. Positive responses are defined as responses above 50 spot forming units per million cells.</p
    corecore