2,088 research outputs found

    The [4+2]‐Cycloaddition of α‐Nitrosoalkenes with Thiochalcones as a Prototype of Periselective Hetero‐Diels–Alder Reactions—Experimental and Computational Studies

    Get PDF
    The [4+2]‐cycloadditions of α‐nitrosoalkenes with thiochalcones occur with high selectivity at the thioketone moiety of the dienophile providing styryl‐substituted 4H‐1,5,2‐oxathiazines in moderate to good yields. Of the eight conceivable hetero‐Diels–Alder adducts only this isomer was observed, thus a prototype of a highly periselective and regioselective cycloaddition has been identified. Analysis of crude product mixtures revealed that the α‐nitrosoalkene also adds competitively to the thioketone moiety of the thiochalcone dimer affording bis‐heterocyclic [4+2]‐cycloadducts. The experiments are supported by high‐level DFT calculations that were also extended to related hetero‐Diels–Alder reactions of other nitroso compounds and thioketones. These calculations reveal that the title cycloadditions are kinetically controlled processes confirming the role of thioketones as superdienophiles. The computational study was also applied to the experimentally studied thiochalcone dimerization, and showed that the 1,2‐dithiin and 2H‐thiopyran isomers are in equilibrium with the monomer. Again, the DFT calculations indicate kinetic control of this process

    Novel Technique for Ultra-sensitive Determination of Trace Elements in Organic Scintillators

    Get PDF
    A technique based on neutron activation has been developed for an extremely high sensitivity analysis of trace elements in organic materials. Organic materials are sealed in plastic or high purity quartz and irradiated at the HFIR and MITR. The most volatile materials such as liquid scintillator (LS) are first preconcentrated by clean vacuum evaporation. Activities of interest are separated from side activities by acid digestion and ion exchange. The technique has been applied to study the liquid scintillator used in the KamLAND neutrino experiment. Detection limits of <2.4X10**-15 g 40K/g LS, <5.5X10**-15 g Th/g LS, and <8X10**-15 g U/g LS have been achieved.Comment: 16 pages, 3 figures, accepted for publication in Nuclear Instruments and Methods

    Chaotic flow and efficient mixing in a micro-channel with a polymer solution

    Full text link
    Microscopic flows are almost universally linear, laminar and stationary because Reynolds number, ReRe, is usually very small. That impedes mixing in micro-fluidic devices, which sometimes limits their performance. Here we show that truly chaotic flow can be generated in a smooth micro-channel of a uniform width at arbitrarily low ReRe, if a small amount of flexible polymers is added to the working liquid. The chaotic flow regime is characterized by randomly fluctuating three-dimensional velocity field and significant growth of the flow resistance. Although the size of the polymer molecules extended in the flow may become comparable with the micro-channel width, the flow behavior is fully compatible with that in a table-top channel in the regime of elastic turbulence. The chaotic flow leads to quite efficient mixing, which is almost diffusion independent. For macromolecules, mixing time in this microscopic flow can be three to four orders of magnitude shorter than due to molecular diffusion.Comment: 8 pages,7 figure

    Penalty finite element approximations of the stationary power- law Stokes problem

    Get PDF
    Finite element approximations of the stationary power-law Stokes problem using penalty formulation are considered. A priori error estimates under appropriate smoothness assumptions on the solutions are established without assuming a discrete version of the BB condition. Numerical solutions are presented by implementing a nonlinear conjugate gradient metho

    CN and HCN in Dense Interstellar Clouds

    Full text link
    We present a theoretical investigation of CN and HCN molecule formation in dense interstellar clouds. We study the gas-phase CN and HCN production efficiencies from the outer photon-dominated regions (PDRs) into the opaque cosmic-ray dominated cores. We calculate the equilibrium densities of CN and HCN, and of the associated species C+, C, and CO, as functions of the far-ultraviolet (FUV) optical depth. We consider isothermal gas at 50 K, with hydrogen particle densities from 10^2 to 10^6 cm^-3. We study clouds that are exposed to FUV fields with intensities 20 to 2*10^5 times the mean interstellar FUV intensity. We assume cosmic-ray H2 ionization rates ranging from 5*10^-17 s^-1, to an enhanced value of 5*10^-16 s^-1. We also examine the sensitivity of the density profiles to the gas-phase sulfur abundance.Comment: Accepted for publication in ApJ, 33 pages, 8 figure

    Switching the stereochemical outcome of 6-endo-trig cyclizations; Synthesis of 2,6-Cis-6-substituted 4-oxopipecolic acids

    Get PDF
    A base-mediated 6-endo-trig cyclization of readily accessible enone-derived α-amino acids has been developed for the direct synthesis of novel 2,6-cis-6- substituted-4-oxo-L-pipecolic acids. A range of aliphatic and aryl side chains were tolerated by this mild procedure to give the target compounds in good overall yields. Molecular modeling of the 6-endo-trig cyclization allowed some insight as to how these compounds were formed, with the enolate intermediate generated via an equilibrium process, followed by irreversible tautomerization/neutralization providing the driving force for product formation. Stereoselective reduction and deprotection of the resulting 2,6-cis-6-substituted 4-oxo-L-pipecolic acids to the corresponding 4-hydroxy-L-pipecolic acids was also performed

    Expanding the Repertoire of Natural Product-Inspired Ring Pairs for Molecular Recognition of DNA

    Get PDF
    A furan amino acid, inspired by the recently discovered proximicin natural products, was incorporated into the scaffold of a DNA-binding hairpin polyamide. While unpaired oligomers of 2,4-disubstituted furan amino acids show poor DNA-binding activity, furan (Fn) carboxamides paired with N-methylpyrrole (Py) and N-methylimidazole (Im) rings demonstrate excellent stabilization of duplex DNA as well as discrimination of noncognate sequences, consistent with function as a Py mimic according to the Py/Im polyamide pairing rules

    A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip

    Get PDF
    Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization. Here, a simple protein crystallization method inside the features of the HARE serial crystallography chips is reported that circumvents batch crystallization and allows the direct transfer of canonical vapor-diffusion conditions to in-chip crystallization. Based on conventional hanging-drop vapor-diffusion experiments, the crystallization solution is distributed into the wells of the HARE chip and equilibrated against a reservoir with mother liquor. Using this simple method, high-quality microcrystals were generated with sufficient density for the structure determination of four different proteins. A new protein variant was crystallized using the protein concentrations encountered during canonical crystallization experiments, enabling structure determination from ∼55 µg of protein. Additionally, structure determination from intracellular crystals grown in insect cells cultured directly in the features of the HARE chips is demonstrated. In cellulo crystallization represents a comparatively un­explored space in crystallization, especially for proteins that are resistant to crystallization using conventional techniques, and eliminates any need for laborious protein purification. This in-chip technique avoids harvesting the sensitive crystals or any further physical handling of the crystal-containing cells. These proof-of-principle experiments indicate the potential of this method to become a simple alternative to batch crystallization approaches and also as a convenient extension to canonical crystallization screens

    Elastic turbulence in curvilinear flows of polymer solutions

    Full text link
    Following our first report (A. Groisman and V. Steinberg, \sl Nature 405\bf 405, 53 (2000)) we present an extended account of experimental observations of elasticity induced turbulence in three different systems: a swirling flow between two plates, a Couette-Taylor (CT) flow between two cylinders, and a flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of width of the region available for flow to radius of curvature of the streamlines. The experiments were carried out with dilute solutions of high molecular weight polyacrylamide in concentrated sugar syrups. High polymer relaxation time and solution viscosity ensured prevalence of non-linear elastic effects over inertial non-linearity, and development of purely elastic instabilities at low Reynolds number (Re) in all three flows. Above the elastic instability threshold, flows in all three systems exhibit features of developed turbulence. Those include: (i)randomly fluctuating fluid motion excited in a broad range of spatial and temporal scales; (ii) significant increase in the rates of momentum and mass transfer (compared to those expected for a steady flow with a smooth velocity profile). Phenomenology, driving mechanisms, and parameter dependence of the elastic turbulence are compared with those of the conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure
    corecore