5 research outputs found

    Low-grade inflammation in survivors of childhood cancer and testicular cancer and its association with hypogonadism and metabolic risk factors

    No full text
    BACKGROUND: In childhood (CCS) and testicular cancer (TCS) survivors, low-grade inflammation may represent a link between testosterone deficiency (hypogonadism) and risk of metabolic syndrome. We aimed to study levels of inflammatory markers in CCS and TCS and the association with hypogonadism and future cardio-metabolic risk factors.METHODS: Serum levels of inflammatory markers and testosterone were analyzed in CCS (n = 90), and TCS (n = 64, median time from diagnosis: 20 and 2.0 years, respectively), and in controls (n = 44). Differences in levels between patients and controls were calculated using univariate analysis of variance. T-test and logistic regression were applied to compare levels of cardio-metabolic risk factors and odds ratio (OR) of hypogonadism and metabolic syndrome in low and high inflammatory marker groups after 4-12 years of follow up. Adjustment for age, smoking, and active cancer was made.RESULTS: TCS and CCS, as compared to controls, had 1.44 (95%CI 1.06-1.96) and 1.25 (95 CI 1.02-1.53) times higher levels of IL-8, respectively. High IL-6 levels were associated with hypogonadism at baseline (OR 2.83, 95%CI 1.25-6.43) and the association was stronger for high IL-6 combined with low IL-10 levels (OR 3.10, 95%CI 1.37-7.01). High IL-6 levels were also associated with higher BMI, waist circumference, insulin, and HbA1c at follow up. High TNF-α was associated with higher diastolic blood pressure. No individual inflammatory marker was significantly associated with risk of metabolic syndrome at follow up. High IL-6 combined with low IL-10 levels were associated with risk of metabolic syndrome (OR 3.83, 95%CI 1.07-13.75), however not statistically significantly after adjustment.CONCLUSION: TCS and CCS present with low-grade inflammation. High IL-6 levels were associated with hypogonadism and cardio-metabolic risk factors. Low IL-10 levels might reinforce the IL-6 mediated risk of developing metabolic syndrome

    Risk of low bone mineral density in testicular germ cell cancer survivors : Association with hypogonadism and treatment modality

    No full text
    The cure rate of testicular cancer exceeds 95%, but testicular cancer survivors (TCS) are at increased risk of hypogonadism (HG). It has been suggested that TCS have reduced bone mineral density (BMD), but it is unclear whether this is related to HG or a direct effect of cancer therapy. The aim of this study was to evaluate whether TCS have decreased BMD, and if BMD is related to HG and/or the cancer treatment given. We investigated 91 TCS (mean age at diagnosis: 31 years; mean 9.3 years follow-up) and equal number of age matched controls (mean age at inclusion 40.3 years and 41.2 years, respectively). Total testosterone and LH were measured. BMD was determined using dual-energy X-ray absorptiometry (DXA). Low BMD (LBD) was defined as Z-score <-1. Compared to eugonadal TCS, both TCS with untreated HG (mean difference: -0.063 g/cm2; 95% CI: -0.122; -0.004 p = 0.037) and TCS receiving androgen replacement (mean difference -0.085 g/cm2; 95% CI: -0.168; -0.003; p = 0.043) presented with statistically significantly 6-8% lower hip BMD. At the spine, L1-L4, an 8% difference reached the level of statistical significance only for those with untreated HG (mean difference: -0.097 g/cm2; 95% CI: -0.179; -0.014; p = 0.022). TCS with untreated HG had significantly increased OR for spine L1-L4 LBD (OR = 4.1; 95% CI: 1.3; 13; p = 0.020). The associations between the treatment given and BMD were statistically non-significant, both with and without adjustment for HG. In conclusion, TCS with HG are at increased risk of impaired bone health. Prevention of osteoporosis should be considered as an important part in future follow up of these men

    Androgen receptor gene CAG and GGN repeat lengths as predictors of recovery of spermatogenesis following testicular germ cell cancer treatment

    No full text
    Spermatogenesis is an androgen-regulated process that depends on the action of androgen receptor (AR). Sperm production may be affected in men treated for testicular cancer (TC), and it is important to identify the factors influencing the timing of spermatogenesis recovery following cancer treatment. It is known that the CAG and GGN repeat numbers affect the activity of the AR; therefore, the aim of this study is to investigate if the CAG and GGN polymorphisms in the AR gene predict recovery of sperm production after TC treatment. TC patients (n = 130) delivered ejaculates at the following time points: postorchiectomy and at 6, 12, 24, 36, and 60 months posttherapy (T0, T6, T12, T24, T36, and T60). The CAG lengths were categorized into three groups, 23 CAG, and the GGN tracts were also categorized into three groups, 23 GGN. At T12, men with 22-23 CAG presented with a statistically significantly (P = 0.045) lower sperm concentration than those with other CAG numbers (8.4 × 10 6 ml-1 vs 16 × 10 6 ml-1 ; 95% CI: 1.01-2.65). This association was robust to omitting adjustment for treatment type and sperm concentration at T0 (P = 0.021; 3.7 × 10 6 ml-1 vs 10 × 10 6 ml-1 ; 95% CI: 1.13-4.90). The same trends were observed for total sperm number. The least active AR variant seems to be associated with a more rapid recovery of spermatogenesis. This finding adds to our understanding of the biology of postcancer therapy recovery of fertility in males and has clinical implications
    corecore