19 research outputs found

    Of Mice and Man: Differential DNMT Dependence in Mammalian ESCs

    Get PDF
    Liao et al. (2015) recently reported on the effects of disrupting DNA methyltransferase activity in human embryonic stem cells (hESCs). This work highlights key differences between mammalian ESC models upon the loss of these essential proteins and provides comprehensive base resolution methylome maps of DNMT targets during human development

    Genome-wide epigenetic cross-talk between DNA methylation and H3K27me3 in zebrafish embryos

    Get PDF
    AbstractDNA methylation and histone modifications are epigenetic marks implicated in the complex regulation of vertebrate embryogenesis. The cross-talk between DNA methylation and Polycomb-dependent H3K27me3 histone mark has been reported in a number of organisms [1-7] and both marks are known to be required for proper developmental progression. Here we provide genome-wide DNA methylation (MethylCap-seq) and H3K27me3 (ChIP-seq) maps for three stages (dome, 24hpf and 48hpf) of zebrafish (Danio rerio) embryogenesis, as well as all analytical and methodological details associated with the generation of this dataset. We observe a strong antagonism between the two epigenetic marks present in CpG islands and their compatibility throughout the bulk of the genome, as previously reported in mammalian ESC lines (Brinkman et al., 2012). Next generation sequencing data linked to this project have been deposited in the Gene Expression Omnibus (GEO) database under accession numbers GSE35050 and GSE70847

    Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints

    Get PDF
    This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date; after six months, it is available under a Creative Commons License.-- et al.The order of genes in eukaryotic genomes has generally been assumed to be neutral, since gene order is largely scrambled over evolutionary time. Only a handful of exceptional examples are known, typically involving deeply conserved clusters of tandemly duplicated genes (e.g., Hox genes and histones). Here we report the first systematic survey of microsynteny conservation across metazoans, utilizing 17 genome sequences. We identified nearly 600 pairs of unrelated genes that have remained tightly physically linked in diverse lineages across over 600 million years of evolution. Integrating sequence conservation, gene expression data, gene function, epigenetic marks, and other genomic features, we provide extensive evidence that many conserved ancient linkages involve (1) the coordinated transcription of neighboring genes, or (2) genomic regulatory blocks (GRBs) in which transcriptional enhancers controlling developmental genes are contained within nearby bystander genes. In addition, we generated ChIP-seq data for key histone modifications in zebrafish embryos, which provided further evidence of putative GRBs in embryonic development. Finally, using chromosome conformation capture (3C) assays and stable transgenic experiments, we demonstrate that enhancers within bystander genes drive the expression of genes such as Otx and Islet, critical regulators of central nervous system development across bilaterians. These results suggest that ancient genomic functional associations are far more common than previously thought—involving ∼12% of the ancestral bilaterian genome—and that cis-regulatory constraints are crucial in determining metazoan genome architecture.M.I., M.S.A., S.W.R., and H.B.F. were funded by NIH grant 1R21HG005240-01A1. H.B.F. is an Alfred P. Sloan Fellow and Pew Scholar in the Biomedical Sciences. J.J.T., A.F-M., O.B., E.C-M., and J.L.G-S. were funded by grants BFU2010-14839, CSD2007-00008, and Proyecto de Excelencia CVI-3488.Peer reviewe

    Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis

    Get PDF
    This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date; after six months, it is available under a Creative Commons License.-- et al.The generation of distinctive cell types that form different tissues and organs requires precise, temporal and spatial control of gene expression. This depends on specific cis-regulatory elements distributed in the noncoding DNA surrounding their target genes. Studies performed on mammalian embryonic stem cells and Drosophila embryos suggest that active enhancers form part of a defined chromatin landscape marked by histone H3 lysine 4 mono-methylation (H3K4me1) and histone H3 lysine 27 acetylation (H3K27ac). Nevertheless, little is known about the dynamics and the potential roles of these marks during vertebrate embryogenesis. Here, we provide genomic maps of H3K4me1/me3 and H3K27ac at four developmental time-points of zebrafish embryogenesis and analyze embryonic enhancer activity. We find that (1) changes in H3K27ac enrichment at enhancers accompany the shift from pluripotency to tissue-specific gene expression, (2) in early embryos, the peaks of H3K27ac enrichment are bound by pluripotent factors such as Nanog, and (3) the degree of evolutionary conservation is higher for enhancers that become marked by H3K27ac at the end of gastrulation, suggesting their implication in the establishment of the most conserved (phylotypic) transcriptome that is known to occur later at the pharyngula stage.We thank the Spanish and Andalusian Governments for grants (BFU2010-14839, CSD2007-00008, and Proyecto de Excelencia CVI-3488) for funding this study.Peer reviewe

    Low Temperature Deposition of SiNx Thin Films by the LPCVD Method

    Get PDF
    Thin silicon rich nitride (SiNx) films were deposited using the LPCVD (Low Pressure Chemical Vapor Deposition) method. Silane diluted in argon and ammonia were used as the reactant gasses, and the low temperature deposition at 570 °C was used. The films were deposited on silicon (111) substrates. Films with the different values of the nitrogen content were deposited by varying the ratio of the flows of ammonia and silane in the horizontal tube reactor. The films were characterized in terms on the surface quality (by scanning electron microscopy), in terms of the nitrogen content x by time of flight elastic recoil detection analysis and by Raman and FTIR spectroscopy. The thickness and dielectric constant were measured by ellipsometry. The films were found to have a very smooth, homogeneous surface with nitrogen content that vary from x = 0 to x = 1 in dependence on the deposition parameters. The intensity of the Si–N stretching peak has shown strong correlation with the film thickness measured by ellipsometry. The films showed a smooth surface layer and the value of dielectric constant easily controllable by the ratio of the flow of the gases in the reactor. (doi: 10.5562/cca1970

    DNA methylation and methyl-CpG binding proteins: developmental requirements and function

    Get PDF
    DNA methylation is a major epigenetic modification in the genomes of higher eukaryotes. In vertebrates, DNA methylation occurs predominantly on the CpG dinucleotide, and approximately 60% to 90% of these dinucleotides are modified. Distinct DNA methylation patterns, which can vary between different tissues and developmental stages, exist on specific loci. Sites of DNA methylation are occupied by various proteins, including methyl-CpG binding domain (MBD) proteins which recruit the enzymatic machinery to establish silent chromatin. Mutations in the MBD family member MeCP2 are the cause of Rett syndrome, a severe neurodevelopmental disorder, whereas other MBDs are known to bind sites of hypermethylation in human cancer cell lines. Here, we review the advances in our understanding of the function of DNA methylation, DNA methyltransferases, and methyl-CpG binding proteins in vertebrate embryonic development. MBDs function in transcriptional repression and long-range interactions in chromatin and also appear to play a role in genomic stability, neural signaling, and transcriptional activation. DNA methylation makes an essential and versatile epigenetic contribution to genome integrity and function

    Tet proteins: master regulators of vertebrate body plan formation?

    No full text
    corecore