4,612 research outputs found

    Deep XMM-Newton Spectroscopic and Timing Observations of the Isolated Radio Millisecond Pulsar PSR J0030+0451

    Full text link
    We present deep XMM-Newton EPIC spectroscopic and timing X-ray observations of the nearby solitary radio millisecond pulsar, PSR J0030+0451. Its emission spectrum in the 0.1-10 keV range is found to be remarkably similar to that of the nearest and best studied millisecond pulsar, PSR J0437-4715, being well described by a predominantly thermal two-temperature model plus a faint hard tail evident above ~2 keV. The pulsed emission in the 0.3-2 keV band is characterized by two broad pulses with pulsed fraction ~60-70%, consistent with a mostly thermal origin of the X-rays only if the surface polar cap radiation is from a light-element atmosphere. Modeling of the thermal pulses permits us to place constraints on the neutron star radius of R>10.7 (95% confidence) and R>10.4 km (at 99.9% confidence) for M=1.4 M_sun.Comment: 8 pages, 7 figures; accepted for publication in The Astrophysical Journa

    Skyrmionic textures in chiral magnets

    Full text link
    In non-centrosymmetric magnets the chiral Dzyaloshinskii-Moriya exchange stabilizes Skyrmion-strings as excitations which may condense into multiply modulated phases. Such extended Skyrmionic textures are determined by the stability of the localized "solitonic" Skyrmion cores and their geometrical incompatibility which frustrates regular space-filling. We present numerically exact solutions for Skyrmion lattices and formulate basic properties of the Skyrmionic states.Comment: Conference information: The International Conference on Magnetism (ICM), Karlsruhe, July 26 - 31, 200

    Exchange shift of stripe domains in antiferromagnetically coupled multilayers

    Full text link
    Antiferromagnetically coupled multilayers with perpendicular anisotropy, as [CoPt]/Ru, Co/Ir, Fe/Au, display ferromagnetic stripe phases as the ground states. It is theoretically shown that the antiferromagnetic interlayer exchange causes a relative shift of domains in adjacent layers. This ``exchange shift'' is responsible for several recently observed effects: an anomalous broadening of domain walls, the formation of so-called ``tiger-tail'' patterns, and a ``mixed state'' of antiferromagnetic and ferromagnetic domains in [CoPt]/Ru multilayers. The derived analitical relations between the values of the shift and the strength of antiferromagnetic coupling provide an effective method for a quantitative determination of the interlayer exchange interactions.Comment: 4 pages, 3 figure

    Theory of vortex states in magnetic nanodisks with induced Dzyaloshinskii-Moriya interactions

    Full text link
    Vortex states in magnetic nanodisks are essentially affected by surface/interface induced Dzyaloshinskii-Moriya interactions. Within a micromagnetic approach we calculate the equilibrium sizes and shape of the vortices as functions of magnetic field, the material and geometrical parameters of nanodisks. It was found that the Dzyaloshinskii-Moriya coupling can considerably increase sizes of vortices with "right" chirality and suppress vortices with opposite chirality. This allows to form a bistable system of homochiral vortices as a basic element for storage applications.Comment: 8 pages, 8 figure

    On the heavenly equation hierarchy and its reductions

    Full text link
    Second heavenly equation hierarchy is considered using the framework of hyper-K\"ahler hierarchy developed by Takasaki. Generating equations for the hierarchy are introduced, they are used to construct generating equations for reduced hierarchies. General NN-reductions, logarithmic reduction and rational reduction for one of the Lax-Sato functions are discussed. It is demonstrated that rational reduction is equivalent to the symmetry constraint.Comment: 13 pages, LaTeX, minor misprints corrected, references adde

    `Interpolating' differential reductions of multidimensional integrable hierarchies

    Full text link
    We transfer the scheme of constructing differential reductions, developed recently for the case of the Manakov-Santini hierarchy, to the general multidimensional case. We consider in more detail the four-dimensional case, connected with the second heavenly equation and its generalization proposed by Dunajski. We give a characterization of differential reductions in terms of the Lax-Sato equations as well as in the framework of the dressing method based on nonlinear Riemann-Hilbert problem.Comment: Based on the talk at NLPVI, Gallipoli, 15 page

    Grassmannians Gr(N-1,N+1), closed differential N-1 forms and N-dimensional integrable systems

    Full text link
    Integrable flows on the Grassmannians Gr(N-1,N+1) are defined by the requirement of closedness of the differential N-1 forms ΩN−1\Omega_{N-1} of rank N-1 naturally associated with Gr(N-1,N+1). Gauge-invariant parts of these flows, given by the systems of the N-1 quasi-linear differential equations, describe coisotropic deformations of (N-1)-dimensional linear subspaces. For the class of solutions which are Laurent polynomials in one variable these systems coincide with N-dimensional integrable systems such as Liouville equation (N=2), dispersionless Kadomtsev-Petviashvili equation (N=3), dispersionless Toda equation (N=3), Plebanski second heavenly equation (N=4) and others. Gauge invariant part of the forms ΩN−1\Omega_{N-1} provides us with the compact form of the corresponding hierarchies. Dual quasi-linear systems associated with the projectively dual Grassmannians Gr(2,N+1) are defined via the requirement of the closedness of the dual forms ΩN−1⋆\Omega_{N-1}^{\star}. It is shown that at N=3 the self-dual quasi-linear system, which is associated with the harmonic (closed and co-closed) form Ω2\Omega_{2}, coincides with the Maxwell equations for orthogonal electric and magnetic fields.Comment: 26 pages, references adde
    • …
    corecore