We transfer the scheme of constructing differential reductions, developed
recently for the case of the Manakov-Santini hierarchy, to the general
multidimensional case. We consider in more detail the four-dimensional case,
connected with the second heavenly equation and its generalization proposed by
Dunajski. We give a characterization of differential reductions in terms of the
Lax-Sato equations as well as in the framework of the dressing method based on
nonlinear Riemann-Hilbert problem.Comment: Based on the talk at NLPVI, Gallipoli, 15 page