45 research outputs found

    Genetic Networks Controlling Structural Outcome of Glucosinolate Activation across Development

    Get PDF
    Most phenotypic variation present in natural populations is under polygenic control, largely determined by genetic variation at quantitative trait loci (QTLs). These genetic loci frequently interact with the environment, development, and each other, yet the importance of these interactions on the underlying genetic architecture of quantitative traits is not well characterized. To better study how epistasis and development may influence quantitative traits, we studied genetic variation in Arabidopsis glucosinolate activation using the moderately sized Bayreuth×Shahdara recombinant inbred population, in terms of number of lines. We identified QTLs for glucosinolate activation at three different developmental stages. Numerous QTLs showed developmental dependency, as well as a large epistatic network, centered on the previously cloned large-effect glucosinolate activation QTL, ESP. Analysis of Heterogeneous Inbred Families validated seven loci and all of the QTL×DPG (days post-germination) interactions tested, but was complicated by the extensive epistasis. A comparison of transcript accumulation data within 211 of these RILs showed an extensive overlap of gene expression QTLs for structural specifiers and their homologs with the identified glucosinolate activation loci. Finally, we were able to show that two of the QTLs are the result of whole-genome duplications of a glucosinolate activation gene cluster. These data reveal complex age-dependent regulation of structural outcomes and suggest that transcriptional regulation is associated with a significant portion of the underlying ontogenic variation and epistatic interactions in glucosinolate activation

    Nutrient limitations in an extant and drained poor fen: implications for restoration

    No full text
    In a species-rich poor fen (Caricetum nigrae) and a species-poor drained fen, the difference in nutrient limitation of the vegetation was assessed in a full-factorial fertilization experiment with N, P and K. The results were compared to the nutrient ratios of plant material and to chemical analysis of the topsoil. A rewetting experiment with intact sods was carried out in the glasshouse and the results are discussed in view of restoration prospects of drained and degraded peatlands. In the undrained poor fen the above-ground biomass yield was N-limited while the vegetation of the drained fen was K-limited. Experimental rewetting of intact turf samples, taken in the drained site, did not change the biomass yield or the type of nutrient limitation. It was concluded that mire systems which have been subjected to prolonged drainage are inclined to pronounced K-deficiency, probably due to washing out of potassium and harvesting the standing crop. This may hamper restoration projects in degraded peat areas where nature conservation tries to restore species-rich vegetation types with a high nature value.

    Nutrient imitations in an extant and drained poor fen: implications for restoration

    Get PDF
    In a species-rich poor fen (Caricetum nigrae) and a species-poor drained fen, the difference in nutrient limitation of the vegetation was assessed in a full-factorial fertilization experiment with N, P and K. The results were compared to the nutrient ratios of plant material and to chemical analysis of the topsoil. A rewetting experiment with intact sods was carried out in the glasshouse and the results are discussed in view of restoration prospects of drained and degraded peatlands. In the undrained poor fen the above-ground biomass yield was N-limited while the vegetation of the drained fen was K-limited. Experimental rewetting of intact turf samples, taken in the drained site, did not change the biomass yield or the type of nutrient limitation. It was concluded that mire systems which have been subjected to prolonged drainage are inclined to pronounced K-deficiency, probably due to washing out of potassium and harvesting the standing crop. This may hamper restoration projects in degraded peat areas where nature conservation tries to restore species-rich vegetation types with a high nature value

    5.4 Verzuring

    Get PDF
    corecore