9 research outputs found

    Computational pan-genomics: Status, promises and challenges

    Get PDF
    Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different Computational methods and paradigms are needed.We will witness the rapid extension of Computational pan-genomics, a new sub-area of research in Computational biology. In this article, we generalize existing definitions and understand a pangenome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a Computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations

    Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries

    No full text
    International audienceNeuroblastoma is a tumor of the peripheral sympathetic nervous system(1), derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies

    Measuring mutation accumulation in single human adult stem cells by whole-genome sequencing of organoid cultures

    No full text
    Characterization of mutational processes in adult stem cells (ASCs) will improve our understanding of aging-related diseases, such as cancer and organ failure, and may ultimately help prevent the development of these diseases. Here, we present a method for cataloging mutations in individual human ASCs without the necessity of using error-prone whole-genome amplification. Single ASCs are expanded in vitro into clonal organoid cultures to generate sufficient DNA for accurate whole-genome sequencing (WGS) analysis. We developed a data-analysis pipeline that identifies with high confidence somatic variants that accumulated in vivo in the original ASC. These genome-wide mutation catalogs are valuable resources for the characterization of the underlying mutational mechanisms. In addition, this protocol can be used to determine the effects of culture conditions or mutagen exposure on mutation accumulation in ASCs in vitro. Here, we describe a protocol for human liver ASCs that can be completed over a period of 3-4 months with hands-on time of â 1/45 d

    Tissue-specific mutation accumulation in human adult stem cells during life

    No full text
    The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life
    corecore