2,334 research outputs found

    Planetary entry parachute program

    Get PDF
    Material strength, shock loading, and stress analyses for planetary entry parachute desig

    Continuous extremal optimization for Lennard-Jones Clusters

    Full text link
    In this paper, we explore a general-purpose heuristic algorithm for finding high-quality solutions to continuous optimization problems. The method, called continuous extremal optimization(CEO), can be considered as an extension of extremal optimization(EO) and is consisted of two components, one is with responsibility for global searching and the other is with responsibility for local searching. With only one adjustable parameter, the CEO's performance proves competitive with more elaborate stochastic optimization procedures. We demonstrate it on a well known continuous optimization problem: the Lennerd-Jones clusters optimization problem.Comment: 5 pages and 3 figure

    Aging in Dense Colloids as Diffusion in the Logarithm of Time

    Full text link
    The far-from-equilibrium dynamics of glassy systems share important phenomenological traits. A transition is generally observed from a time-homogeneous dynamical regime to an aging regime where physical changes occur intermittently and, on average, at a decreasing rate. It has been suggested that a global change of the independent time variable to its logarithm may render the aging dynamics homogeneous: for colloids, this entails diffusion but on a logarithmic time scale. Our novel analysis of experimental colloid data confirms that the mean square displacement grows linearly in time at low densities and shows that it grows linearly in the logarithm of time at high densities. Correspondingly, pairs of particles initially in close contact survive as pairs with a probability which decays exponentially in either time or its logarithm. The form of the Probability Density Function of the displacements shows that long-ranged spatial correlations are very long-lived in dense colloids. A phenomenological stochastic model is then introduced which relies on the growth and collapse of strongly correlated clusters ("dynamic heterogeneity"), and which reproduces the full spectrum of observed colloidal behaviors depending on the form assumed for the probability that a cluster collapses during a Monte Carlo update. In the limit where large clusters dominate, the collapse rate is ~1/t, implying a homogeneous, log-Poissonian process that qualitatively reproduces the experimental results for dense colloids. Finally an analytical toy-model is discussed to elucidate the strong dependence of the simulation results on the integrability (or lack thereof) of the cluster collapse probability function.Comment: 6 pages, extensively revised, final version; for related work, see http://www.physics.emory.edu/faculty/boettcher/ or http://www.fysik.sdu.dk/staff/staff-vip/pas-personal.htm

    Statistical Models on Spherical Geometries

    Full text link
    We use a one-dimensional random walk on DD-dimensional hyper-spheres to determine the critical behavior of statistical systems in hyper-spherical geometries. First, we demonstrate the properties of such a walk by studying the phase diagram of a percolation problem. We find a line of second and first order phase transitions separated by a tricritical point. Then, we analyze the adsorption-desorption transition for a polymer growing near the attractive boundary of a cylindrical cell membrane. We find that the fraction of adsorbed monomers on the boundary vanishes exponentially when the adsorption energy decreases towards its critical value.Comment: 8 pages, latex, 2 figures in p

    Polymer-Chain Adsorption Transition at a Cylindrical Boundary

    Full text link
    In a recent letter, a simple method was proposed to generate solvable models that predict the critical properties of statistical systems in hyperspherical geometries. To that end, it was shown how to reduce a random walk in DD dimensions to an anisotropic one-dimensional random walk on concentric hyperspheres. Here, I construct such a random walk to model the adsorption-desorption transition of polymer chains growing near an attractive cylindrical boundary such as that of a cell membrane. I find that the fraction of adsorbed monomers on the boundary vanishes exponentially when the adsorption energy decreases towards its critical value. When the adsorption energy rises beyond a certain value above the critical point whose scale is set by the radius of the cell, the adsorption fraction exhibits a crossover to a linear increase characteristic to polymers growing near planar boundaries.Comment: latex, 12 pages, 3 ps-figures, uuencode

    Aging in lattice-gas models with constrained dynamics

    Full text link
    We investigate the aging behavior of lattice-gas models with constrained dynamics in which particle exchange with a reservoir is allowed. Such models provide a particularly simple interpretation of aging phenomena as a slow approach to criticality. They appear as the simplest three dimensional models exhibiting a glassy behavior similar to that of mean field (low temperature mode-coupling) models.Comment: 5 pages and 3 figures, REVTeX. Submitted to Europhysics Letter

    Reduction of Two-Dimensional Dilute Ising Spin Glasses

    Full text link
    The recently proposed reduction method is applied to the Edwards-Anderson model on bond-diluted square lattices. This allows, in combination with a graph-theoretical matching algorithm, to calculate numerically exact ground states of large systems. Low-temperature domain-wall excitations are studied to determine the stiffness exponent y_2. A value of y_2=-0.281(3) is found, consistent with previous results obtained on undiluted lattices. This comparison demonstrates the validity of the reduction method for bond-diluted spin systems and provides strong support for similar studies proclaiming accurate results for stiffness exponents in dimensions d=3,...,7.Comment: 7 pages, RevTex4, 6 ps-figures included, for related information, see http://www.physics.emory.edu/faculty/boettcher
    corecore