105 research outputs found

    Aggregatibacter actinomycetemcomitans leukotoxin induces cytosol acidification in LFA-1 expressing immune cells

    Get PDF
    Studies have suggested that Aggregatibacter actinomycetemcomitans leukotoxin (LtxA) kills human lymphocyte function-associated antigen 1 (LFA-1; CD11a/CD18)-bearing immune cells through a lysosomal-mediated mechanism. Lysosomes are membrane-bound cellular organelles that contain an array of acid hydrolases that are capable of breaking down biomolecules. The lysosomal membrane bilayer confines the pH-sensitive enzymes within an optimal acidic (pH 4.8) environment thereby protecting the slightly basic cytosol (pH 6.8-7.5). In the current study, we have probed the effect of LtxA-induced cytolysis on lysosomal integrity in two different K562 erythroleukemia cell lines. K562-puro/LFA-1 cells were stably transfected with CD11a and CD18 cDNA to express LFA-1 on the cell surface while K562-puro, which does not express LFA-1, served as a control. Following treatment with 100 ng ml-1 LtxA cells were analyzed by live cell imaging in conjunction with time-lapse confocal microscopy and by flow cytometry. Using a pH-sensitive indicator (pHrodo®) we demonstrated that the toxin causes a decrease in the intracellular pH in K562-puro/LFA-1 cells that is noticeable within the first 15 min of treatment. This process correlated with the disappearance of lysosomes in the cytosol as determined by both acridine orange and LysoTracker® Red DND-99 staining. These changes were not observed in K562-puro cells or when heat inactivated toxin was added to K562-puro/LFA-1. Our results suggest that LtxA induces lysosomal damage, cytosol acidification, which is followed by cell death in K562-puro/LFA-1 cells. © 2016 John Wiley & Sons A/S

    Lymphoid Susceptibility to the Aggregatibacter Actinomycetemcomitans Cytolethal Distending Toxin is Dependent Upon Baseline Levels of the Signaling Lipid, Phosphatidylinositol-3,4,5-Triphosphate

    Get PDF
    The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes and other cell types. We have shown that the active subunit, CdtB, exhibits phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity and depletes lymphoid cells of PIP3. Hence we propose that Cdt toxicity results from depletion of this signaling lipid and perturbation of phosphatidylinositol-3-kinase (PI-3K)/PIP3/Akt signaling. We have now focused on the relationship between cell susceptibility to CdtB and differences in the status of baseline PIP3 levels. Our studies demonstrate that the baseline level of PIP3, and likely the dependence of cells on steady-state activity of the PI-3K signaling pathway for growth and survival, influence cell susceptibility to the toxic effects of Cdt. Jurkat cells with known defects in both PIP3 degradative enzymes, PTEN and SHIP1, not only contain high baseline levels of PIP3, pAkt, and pGSK3β, but also exhibit high sensitivity to Cdt. In contrast, HUT78 cells, with no known defects in this pathway, contain low levels of PIP3, pAkt, and pGSK3β and likely minimal dependence on the PI-3K signaling pathway for growth and survival, and exhibit reduced susceptibility to Cdt. These differences in susceptibility to Cdt cannot be explained by differential toxin binding or internalization of the active subunit. Indeed, we now demonstrate that Jurkat and HUT78 cells bind toxin at comparable levels and internalize relatively equal amounts of CdtB. The relevance of these observations to the mode of action of Cdt and its potential role as a virulence factor isdiscussed. © 2016 John Wiley & Sons A/S

    Calcium-Dependent Association of Calmodulin with the C-Terminal Domain of the Tetraspanin Protein Peripherin/rds

    Get PDF
    Peripherin/rds (p/rds), an integral membrane protein from the transmembrane 4 (TMF4) superfamily, possesses a multi-functional C-terminal domain that plays crucial roles in rod outer segment (ROS) disk renewal and structure. Here, we report that the calcium binding protein calmodulin (CaM) binds to the C-terminal domain of p/rds. Fluorescence spectroscopy reveals Ca2+-dependent association of CaM with a polypeptide corresponding to the C-terminal domain of p/rds. The fluorescence anisotropy of the polypeptide upon CaM titration yields a dissociation constant (KD) of 320 ± 150 nM. The results of the fluorescence experiments were confirmed by GST-pull down analyses in which a GST-p/rds C-terminal domain fusion protein was shown to pull down CaM in a calcium-dependent manner. Moreover, molecular modeling and sequence predictions suggest that the CaM binding domain resides in a p/rds functional hot spot, between residues E314 and G329. Predictions were confirmed by peptide competition studies and a GST-p/rds C-terminal domain construct in which the putative Ca2+/CaM binding site was scrambled. This GST-polypeptide did not associate with Ca2+/CaM. This putative calmodulin domain is highly conserved between human, mouse, rat, and bovine p/rds. Finally, the binding of Ca2+/CaM inhibited fusion between ROS disk and ROS plasma membranes as well as p/rds C-terminal-domain-induced fusion in model membrane studies. These results offer a new mechanism for the modulation of p/rds function. © 2007 American Chemical Society

    Membrane Association and Destabilization by Aggregatibacter Actinomycetemcomitans Leukotoxin Requires Changes in Secondary Structures

    Get PDF
    Summary: Aggregatibacter actinomycetemcomitans is a common inhabitant of the upper aerodigestive tract of humans and non-human primates and is associated with disseminated infections, including lung and brain abscesses, pediatric infective endocarditis, and localized aggressive periodontitis. Aggregatibacter actinomycetemcomitans secretes a repeats-in-toxin protein, leukotoxin, which exclusively kills lymphocyte function-associated antigen-1-bearing cells. The toxin\u27s pathological mechanism is not fully understood; however, experimental evidence indicates that it involves the association with and subsequent destabilization of the target cell\u27s plasma membrane. We have long hypothesized that leukotoxin secondary structure is strongly correlated with membrane association and destabilization. In this study, we tested this hypothesis by analysing lipid-induced changes in leukotoxin conformation. Upon incubation of leukotoxin with lipids that favor leukotoxin-membrane association, we observed an increase in leukotoxin α-helical content that was not observed with lipids that favor membrane destabilization. The change in leukotoxin conformation after incubation with these lipids suggests that membrane binding and membrane destabilization have distinct secondary structural requirements, suggesting that they are independent events. These studies provide insight into the mechanism of cell damage that leads to disease progression by A. actinomycetemcomitans. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

    Aggregatibacter Actinomycetemcomitans Leukotoxin is Post-Translationally Modified by Addition of Either Saturated or Hydroxylated Fatty Acyl Chains

    Get PDF
    Aggregatibacter actinomycetemcomitans, a common inhabitant of the human upper aerodigestive tract, produces a repeat in toxin (RTX), leukotoxin (LtxA). The LtxA is transcribed as a 114-kDa inactive protoxin with activation being achieved by attachment of short chain fatty acyl groups to internal lysine residues. Methyl esters of LtxA that were isolated from A. actinomycetemcomitans strains JP2 and HK1651 and subjected to gas chromatography/mass spectrometry contained palmitoyl (C16:0, 27-29%) and palmitolyl (C16:1 cis Δ9, 43-44%) fatty acyl groups with smaller quantities of myristic (C14:0, 14%) and stearic (C18:0, 12-14%) fatty acids. Liquid chromatography/mass spectrometry of tryptic peptides from acylated and unacylated recombinant LtxA confirmed that Lys562 and Lys687 are the sites of acyl group attachment. During analysis of recombinant LtxA peptides, we observed peptide spectra that were not observed as part of the RTX acylation schemes of either Escherichia coliα-hemolysin or Bordetella pertussis cyclolysin. Mass calculations of these spectra suggested that LtxA was also modified by the addition of monohydroxylated forms of C14 and C16 acyl groups. Multiple reaction monitoring mass spectrometry identified hydroxymyristic and hydroxypalmitic acids in wild-type LtxA methyl esters. Single or tandem replacement of Lys562 and Lys687 with Arg blocks acylation, resulting in a \u3e75% decrease in cytotoxicity when compared with wild-type toxin, suggesting that these post-translational modifications are playing a critical role in LtxA-mediated target cell cytotoxicity. © 2011 John Wiley & Sons A/S

    SNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting

    Get PDF
    The authors would like to thank Mr. Marc Banworth, Mr. Justin Burnett, and Ms. Jamie Watson for their technical assistance, Drs. Muayyad Al-Ubaidi and David Sherry for their comments on the manuscript, and Drs. Roger Janz, Roderick McInnes, Neeraj Agarwal, Vadim Arshavsky, Robert Molday and Anand Swaroop for the provision of reagents as indicated in the text.Mutations in the photoreceptor protein peripherin-2 (also known as RDS) cause severe retinal degeneration. RDS and its homolog ROM-1 (rod outer segment protein 1) are synthesized in the inner segment and then trafficked into the outer segment where they function in tetramers and covalently linked larger complexes. Our goal is to identify binding partners of RDS and ROM-1 that may be involved in their biosynthetic pathway or in their function in the photoreceptor outer segment (OS). Here we utilize several methods including mass spectrometry after affinity purification, in vitro co-expression followed by pull-down, in vivo pull-down from mouse retinas, and proximity ligation assay to identify and confirm the SNARE proteins Syntaxin 3B and SNAP-25 as novel binding partners of RDS and ROM-1. We show that both covalently linked and non-covalently linked RDS complexes interact with Syntaxin 3B. RDS in the mouse is trafficked from the inner segment to the outer segment by both conventional (i.e., Golgi dependent) and unconventional secretory pathways, and RDS from both pathways interacts with Syntaxin3B. Syntaxin 3B and SNAP-25 are enriched in the inner segment (compared to the outer segment) suggesting that the interaction with RDS/ROM-1 occurs in the inner segment. Syntaxin 3B and SNAP-25 are involved in mediating fusion of vesicles carrying other outer segment proteins during outer segment targeting, so could be involved in the trafficking of RDS/ROM-1.Yeshttp://www.plosone.org/static/editorial#pee

    Structure and Dynamics of Cholesterol-Containing Polyunsaturated Lipid Membranes Studied by Neutron Diffraction and NMR

    Get PDF
    A direct and quantitative analysis of the internal structure and dynamics of a polyunsaturated lipid bilayer composed of 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0-22:6n3-PC) containing 29 mol% cholesterol was carried out by neutron diffraction, 2H-NMR and 13C-MAS NMR. Scattering length distribution functions of cholesterol segments as well as of the sn-1 and sn-2 hydrocarbon chains of 18:0-22:6n3-PC were obtained by conducting experiments with specifically deuterated cholesterol and lipids. Cholesterol orients parallel to the phospholipids, with the A-ring near the lipid glycerol and the terminal methyl groups 3 Å away from the bilayer center. Previously, we reported that the density of polyunsaturated docosahexaenoic acid (DHA, 22:6n3) chains was higher near the lipid–water interface. Addition of cholesterol partially redistributes DHA density from near the lipid–water interface to the center of the hydrocarbon region. Cholesterol raises chain-order parameters of both stearic acid and DHA chains. The fractional order increase for stearic acid methylene carbons C8–C18 is larger, reflecting the redistribution of DHA chain density toward the bilayer center. The correlation times of DHA chain isomerization are short and mostly unperturbed by the presence of cholesterol. The uneven distribution of saturated and polyunsaturated chain densities and the cholesterol-induced balancing of chain distributions may have important implications for the function and integrity of membrane receptors, such as rhodopsin

    Spatial Distribution of the Pathways of Cholesterol Homeostasis in Human Retina

    Get PDF
    The retina is a light-sensitive tissue lining the inner surface of the eye and one of the few human organs whose cholesterol maintenance is still poorly understood. Challenges in studies of the retina include its complex multicellular and multilayered structure; unique cell types and functions; and specific physico-chemical environment.We isolated specimens of the neural retina (NR) and underlying retinal pigment epithelium (RPE)/choroid from six deceased human donors and evaluated them for expression of genes and proteins representing the major pathways of cholesterol input, output and regulation. Eighty-four genes were studied by PCR array, 16 genes were assessed by quantitative real time PCR, and 13 proteins were characterized by immunohistochemistry. Cholesterol distribution among different retinal layers was analyzed as well by histochemical staining with filipin. Our major findings pertain to two adjacent retinal layers: the photoreceptor outer segments of NR and the RPE. We demonstrate that in the photoreceptor outer segments, cholesterol biosynthesis, catabolism and regulation via LXR and SREBP are weak or absent and cholesterol content is the lowest of all retinal layers. Cholesterol maintenance in the RPE is different, yet the gene expression also does not appear to be regulated by the SREBPs and varies significantly among different individuals.This comprehensive investigation provides important insights into the relationship and spatial distribution of different pathways of cholesterol input, output and regulation in the NR-RPE region. The data obtained are important for deciphering the putative link between cholesterol and age-related macular degeneration, a major cause of irreversible vision loss in the elderly
    corecore