209 research outputs found
Quantum degeneracy and interaction effects in spin-polarized Fermi-Bose mixtures
Various features of spin-polarized Fermi gases confined in harmonic traps are
discussed, taking into account possible perspectives of experimental
measurements. The mechanism of the expansion of the gas is explicitly
investigated and compared with the one of an interacting Bose gas. The role of
interactions on the equilibrium and non equilibrium behaviour of the fermionic
component in Fermi-Bose mixtures is discussed. Special emphasis is given to the
case of potassium isotopes mixtures.Comment: 5 pages, 3 figures, revtex, to be published in J. Phys.
Creating massive entanglement of Bose condensed atoms
We propose a direct, coherent coupling scheme that can create massively
entangled states of Bose-Einstein condensed atoms. Our idea is based on an
effective interaction between two atoms from coherent Raman processes through a
(two atom) molecular intermediate state. We compare our scheme with other
recent proposals for generation of massive entanglement of Bose condensed
atoms.Comment: 5 pages, 3 figures; Updated figure 3(a), original was "noisy
A white-light trap for Bose-Einstein condensates
We propose a novel method for trapping Bose-condensed atoms using a
white-light interference fringe. Confinement frequencies of tens of kHz can be
achieved in conjunction with trap depths of only a few micro-K. We estimate
that lifetimes on the order of 10 s can be achieved for small numbers of atoms.
The tight confinement and shallow depth permit tunneling processes to be used
for studying interaction effects and for applications in quantum information.Comment: 10 pages with 3 figure
Pesticide Leaching from Agricultural Fields with Ridges and Furrows
In the evaluation of the risk of pesticide leaching to groundwater, the soil surface is usually assumed to be level, although important crops like potato are grown on ridges. A fraction of the water from rainfall and sprinkler irrigation may flow along the soil surface from the ridges to the furrows, thus bringing about an extra load of water and pesticide on the furrow soil. A survey of the literature reveals that surface-runoff from ridges to furrows is a well-known phenomenon but that hardly any data are available on the quantities of water and pesticide involved. On the basis of a field experiment with additional sprinkler irrigation, computer simulations were carried out with the Pesticide Emission Assessment at Regional and Local scales model for separate ridge and furrow systems in a humic sandy potato field. Breakthrough curves of bromide ion (as a tracer for water flow) and carbofuran (as example pesticide) were calculated for 1-m depth in the field. Bromide ion leached comparatively fast from the furrow system, while leaching from the ridge system was slower showing a maximum concentration of about half of that for the furrow system. Carbofuran breakthrough from the furrow system began about a month after application and increased steadily to substantial concentrations. Because the transport time of carbofuran in the ridge soil was much longer, no breakthrough occurred in the growing season. The maximum concentration of carbofuran leaching from the ridge–furrow field was computed to be a factor of six times as high as that computed for the corresponding level field. The study shows that the risk of leaching of pesticides via the furrow soil can be substantially higher than that via the corresponding level field soil
Quantum and Semiclassical Calculations of Cold Atom Collisions in Light Fields
We derive and apply an optical Bloch equation (OBE) model for describing
collisions of ground and excited laser cooled alkali atoms in the presence of
near-resonant light. Typically these collisions lead to loss of atoms from
traps. We compare the results obtained with a quantum mechanical complex
potential treatment, semiclassical Landau-Zener models with decay, and a
quantum time-dependent Monte-Carlo wave packet (MCWP) calculation. We formulate
the OBE method in both adiabatic and diabatic representations. We calculate the
laser intensity dependence of collision probabilities and find that the
adiabatic OBE results agree quantitatively with those of the MCWP calculation,
and qualitatively with the semiclassical Landau-Zener model with delayed decay,
but that the complex potential method or the traditional Landau-Zener model
fail in the saturation limit.Comment: 21 pages, RevTex, 7 eps figures embedded using psfig, see also
http://www.physics.helsinki.fi/~kasuomin
High-precision calculations of dispersion coefficients, static dipole polarizabilities, and atom-wall interaction constants for alkali-metal atoms
The van der Waals coefficients for the alkali-metal atoms from Na to Fr
interacting in their ground states, are calculated using relativistic ab initio
methods. The accuracy of the calculations is estimated by also evaluating
atomic static electric dipole polarizabilities and coefficients for the
interaction of the atoms with a perfectly conducting wall. The results are in
excellent agreement with the latest data from ultra-cold collisions and from
studies of magnetic field induced Feshbach resonances in Na and Rb. For Cs we
provide critically needed data for ultra-cold collision studies
Inter-isotope determination of ultracold rubidium interactions from three high-precision experiments
Combining the measured binding energies of four of the most weakly bound
rovibrational levels of the Rb molecule with the results of two
other recent high-precision rubidium experiments, we obtain exceptionally
strong constraints on the atomic interaction parameters in a highly model
independent analysis. The comparison of Rb and Rb data, where the
two isotopes are related by a mass scaling procedure, plays a crucial role.
Using the consistent picture of the interactions that thus arises we are led to
predictions for scattering lengths, clock shifts, Feshbach resonance fields and
widths with an unprecedented level of accuracy. To demonstrate this, we predict
two Feshbach resonances in mixed-spin scattering channels at easily accessible
magnetic field strengths, which we expect to play a role in the damping of
coherent spin oscillations
Observation of p-wave Threshold Law Using Evaporatively Cooled Fermionic Atoms
We have measured independently both s-wave and p-wave cross-dimensional
thermalization rates for ultracold potassium-40 atoms held in a magnetic trap.
These measurements reveal that this fermionic isotope has a large positive
s-wave triplet scattering length in addition to a low temperature p-wave shape
resonance. We have observed directly the p-wave threshold law which, combined
with the Fermi statistics, dramatically suppresses elastic collision rates at
low temperatures. In addition, we present initial evaporative cooling results
that make possible these collision measurements and are a precursor to
achieving quantum degeneracy in this neutral, low-density Fermi system.Comment: 5 pages, 3 figures, 1 tabl
The density dependence of the transition temperature in a homogenous Bose flui
Transition temperature data obtained as a function of particle density in the
He-Vycor system are compared with recent theoretical calculations for 3D
Bose condensed systems. In the low density dilute Bose gas regime we find, in
agreement with theory, a positive shift in the transition temperature of the
form . At higher densities a maximum is
found in the ratio of for a value of the interaction parameter,
na, that is in agreement with path-integral Monte Carlo calculations.Comment: 4 pages, 3 figure
Theory of Bose-Einstein condensation in trapped gases
The phenomenon of Bose-Einstein condensation of dilute gases in traps is
reviewed from a theoretical perspective. Mean-field theory provides a framework
to understand the main features of the condensation and the role of
interactions between particles. Various properties of these systems are
discussed, including the density profiles and the energy of the ground state
configurations, the collective oscillations and the dynamics of the expansion,
the condensate fraction and the thermodynamic functions. The thermodynamic
limit exhibits a scaling behavior in the relevant length and energy scales.
Despite the dilute nature of the gases, interactions profoundly modify the
static as well as the dynamic properties of the system; the predictions of
mean-field theory are in excellent agreement with available experimental
results. Effects of superfluidity including the existence of quantized vortices
and the reduction of the moment of inertia are discussed, as well as the
consequences of coherence such as the Josephson effect and interference
phenomena. The review also assesses the accuracy and limitations of the
mean-field approach.Comment: revtex, 69 pages, 38 eps figures, new version with more references,
new figures, various changes and corrections, for publ. in Rev. Mod. Phys.,
available also at http://www-phys.science.unitn.it/bec/BEC.htm
- …