209 research outputs found

    Quantum degeneracy and interaction effects in spin-polarized Fermi-Bose mixtures

    Full text link
    Various features of spin-polarized Fermi gases confined in harmonic traps are discussed, taking into account possible perspectives of experimental measurements. The mechanism of the expansion of the gas is explicitly investigated and compared with the one of an interacting Bose gas. The role of interactions on the equilibrium and non equilibrium behaviour of the fermionic component in Fermi-Bose mixtures is discussed. Special emphasis is given to the case of potassium isotopes mixtures.Comment: 5 pages, 3 figures, revtex, to be published in J. Phys.

    Creating massive entanglement of Bose condensed atoms

    Full text link
    We propose a direct, coherent coupling scheme that can create massively entangled states of Bose-Einstein condensed atoms. Our idea is based on an effective interaction between two atoms from coherent Raman processes through a (two atom) molecular intermediate state. We compare our scheme with other recent proposals for generation of massive entanglement of Bose condensed atoms.Comment: 5 pages, 3 figures; Updated figure 3(a), original was "noisy

    A white-light trap for Bose-Einstein condensates

    Full text link
    We propose a novel method for trapping Bose-condensed atoms using a white-light interference fringe. Confinement frequencies of tens of kHz can be achieved in conjunction with trap depths of only a few micro-K. We estimate that lifetimes on the order of 10 s can be achieved for small numbers of atoms. The tight confinement and shallow depth permit tunneling processes to be used for studying interaction effects and for applications in quantum information.Comment: 10 pages with 3 figure

    Pesticide Leaching from Agricultural Fields with Ridges and Furrows

    Get PDF
    In the evaluation of the risk of pesticide leaching to groundwater, the soil surface is usually assumed to be level, although important crops like potato are grown on ridges. A fraction of the water from rainfall and sprinkler irrigation may flow along the soil surface from the ridges to the furrows, thus bringing about an extra load of water and pesticide on the furrow soil. A survey of the literature reveals that surface-runoff from ridges to furrows is a well-known phenomenon but that hardly any data are available on the quantities of water and pesticide involved. On the basis of a field experiment with additional sprinkler irrigation, computer simulations were carried out with the Pesticide Emission Assessment at Regional and Local scales model for separate ridge and furrow systems in a humic sandy potato field. Breakthrough curves of bromide ion (as a tracer for water flow) and carbofuran (as example pesticide) were calculated for 1-m depth in the field. Bromide ion leached comparatively fast from the furrow system, while leaching from the ridge system was slower showing a maximum concentration of about half of that for the furrow system. Carbofuran breakthrough from the furrow system began about a month after application and increased steadily to substantial concentrations. Because the transport time of carbofuran in the ridge soil was much longer, no breakthrough occurred in the growing season. The maximum concentration of carbofuran leaching from the ridge–furrow field was computed to be a factor of six times as high as that computed for the corresponding level field. The study shows that the risk of leaching of pesticides via the furrow soil can be substantially higher than that via the corresponding level field soil

    Quantum and Semiclassical Calculations of Cold Atom Collisions in Light Fields

    Get PDF
    We derive and apply an optical Bloch equation (OBE) model for describing collisions of ground and excited laser cooled alkali atoms in the presence of near-resonant light. Typically these collisions lead to loss of atoms from traps. We compare the results obtained with a quantum mechanical complex potential treatment, semiclassical Landau-Zener models with decay, and a quantum time-dependent Monte-Carlo wave packet (MCWP) calculation. We formulate the OBE method in both adiabatic and diabatic representations. We calculate the laser intensity dependence of collision probabilities and find that the adiabatic OBE results agree quantitatively with those of the MCWP calculation, and qualitatively with the semiclassical Landau-Zener model with delayed decay, but that the complex potential method or the traditional Landau-Zener model fail in the saturation limit.Comment: 21 pages, RevTex, 7 eps figures embedded using psfig, see also http://www.physics.helsinki.fi/~kasuomin

    High-precision calculations of dispersion coefficients, static dipole polarizabilities, and atom-wall interaction constants for alkali-metal atoms

    Full text link
    The van der Waals coefficients for the alkali-metal atoms from Na to Fr interacting in their ground states, are calculated using relativistic ab initio methods. The accuracy of the calculations is estimated by also evaluating atomic static electric dipole polarizabilities and coefficients for the interaction of the atoms with a perfectly conducting wall. The results are in excellent agreement with the latest data from ultra-cold collisions and from studies of magnetic field induced Feshbach resonances in Na and Rb. For Cs we provide critically needed data for ultra-cold collision studies

    Inter-isotope determination of ultracold rubidium interactions from three high-precision experiments

    Get PDF
    Combining the measured binding energies of four of the most weakly bound rovibrational levels of the 87^{87}Rb2_2 molecule with the results of two other recent high-precision rubidium experiments, we obtain exceptionally strong constraints on the atomic interaction parameters in a highly model independent analysis. The comparison of 85^{85}Rb and 87^{87}Rb data, where the two isotopes are related by a mass scaling procedure, plays a crucial role. Using the consistent picture of the interactions that thus arises we are led to predictions for scattering lengths, clock shifts, Feshbach resonance fields and widths with an unprecedented level of accuracy. To demonstrate this, we predict two Feshbach resonances in mixed-spin scattering channels at easily accessible magnetic field strengths, which we expect to play a role in the damping of coherent spin oscillations

    Observation of p-wave Threshold Law Using Evaporatively Cooled Fermionic Atoms

    Full text link
    We have measured independently both s-wave and p-wave cross-dimensional thermalization rates for ultracold potassium-40 atoms held in a magnetic trap. These measurements reveal that this fermionic isotope has a large positive s-wave triplet scattering length in addition to a low temperature p-wave shape resonance. We have observed directly the p-wave threshold law which, combined with the Fermi statistics, dramatically suppresses elastic collision rates at low temperatures. In addition, we present initial evaporative cooling results that make possible these collision measurements and are a precursor to achieving quantum degeneracy in this neutral, low-density Fermi system.Comment: 5 pages, 3 figures, 1 tabl

    The density dependence of the transition temperature in a homogenous Bose flui

    Full text link
    Transition temperature data obtained as a function of particle density in the 4^4He-Vycor system are compared with recent theoretical calculations for 3D Bose condensed systems. In the low density dilute Bose gas regime we find, in agreement with theory, a positive shift in the transition temperature of the form ΔT/T0=γ(na3)1/3\Delta T/T_0 = \gamma(na^{3})^{1/3}. At higher densities a maximum is found in the ratio of Tc/T0T_c /T_0 for a value of the interaction parameter, na3^3, that is in agreement with path-integral Monte Carlo calculations.Comment: 4 pages, 3 figure

    Theory of Bose-Einstein condensation in trapped gases

    Full text link
    The phenomenon of Bose-Einstein condensation of dilute gases in traps is reviewed from a theoretical perspective. Mean-field theory provides a framework to understand the main features of the condensation and the role of interactions between particles. Various properties of these systems are discussed, including the density profiles and the energy of the ground state configurations, the collective oscillations and the dynamics of the expansion, the condensate fraction and the thermodynamic functions. The thermodynamic limit exhibits a scaling behavior in the relevant length and energy scales. Despite the dilute nature of the gases, interactions profoundly modify the static as well as the dynamic properties of the system; the predictions of mean-field theory are in excellent agreement with available experimental results. Effects of superfluidity including the existence of quantized vortices and the reduction of the moment of inertia are discussed, as well as the consequences of coherence such as the Josephson effect and interference phenomena. The review also assesses the accuracy and limitations of the mean-field approach.Comment: revtex, 69 pages, 38 eps figures, new version with more references, new figures, various changes and corrections, for publ. in Rev. Mod. Phys., available also at http://www-phys.science.unitn.it/bec/BEC.htm
    • …
    corecore