1,205 research outputs found

    Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets

    Full text link
    The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar and reactive species fields are studied using their probability density functions (PDF) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damkohler number are examined and the comparison revealed that the Damkohler number effects are most dominant in the near-wall region, where the wall cooling effects are influential. In addition, with the aid of PDFs conditioned on the mixture fraction, the significance of the reactive scalar characteristics in the reaction zone is illustrated. We argue that the combined effects of strong intermittency and strong persistency of anisotropy at the small scales in the entire domain can affect mixing and ultimately the combustion characteristics of the reacting flow

    Rhythm and Vowel Quality in Accents of English

    Get PDF
    In a sample of 27 speakers of Scottish Standard English two notoriously variable consonantal features are investigated: the contrast of /m/ and /w/ and non-prevocalic /r/, the latter both in terms of its presence or absence and the phonetic form it takes, if present. The pattern of realisation of non-prevocalic /r/ largely confirms previously reported findings. But there are a number of surprising results regarding the merger of /m/ and /w/ and the loss of non-prevocalic /r/: While the former is more likely to happen in younger speakers and females, the latter seems more likely in older speakers and males. This is suggestive of change in progress leading to a loss of the /m/ - /w/ contrast, while the variation found in non-prevocalic /r/ follows an almost inverse sociolinguistic pattern that does not suggest any such change and is additionally largely explicable in language-internal terms. One phenomenon requiring further investigation is the curious effect direct contact with Southern English accents seems to have on non-prevocalic /r/: innovation on the structural level (i.e. loss) and conservatism on the realisational level (i.e. increased incidence of [r] and [r]) appear to be conditioned by the same sociolinguistic factors

    Back Reaction Problem in the Inflationary Universe

    Full text link
    We investigate the back reaction of cosmological perturbations on an inflationary universe using the renormalization-group method. The second-order zero mode solution which appears by the nonlinearity of the Einstein equation is regarded as a secular term of a perturbative expansion, we renormalized a constant of integration contained in the background solution and absorbed the secular term to this constant in a gauge-invariant manner. The resultant renormalization-group equation describes the back reaction effect of inhomogeneity on the background universe. For scalar type classical perturbation, by solving the renormalization-group equation, we find that the back reaction of the long wavelength fluctuation works as a positive spatial curvature, and the short wavelength fluctuation works as a radiation fluid. For the long wavelength quantum fluctuation, the effect of back reaction is equivalent to a negative spatial curvature.Comment: 17 page

    The back reaction and the effective Einstein's equation for the Universe with ideal fluid cosmological perturbations

    Get PDF
    We investigate the back reaction of cosmological perturbations on the evolution of the Universe using the renormalization group method. Starting from the second order perturbed Einstein's equation, we renormalize a scale factor of the Universe and derive the evolution equation for the effective scale factor which includes back reaction due to inhomogeneities of the Universe. The resulting equation has the same form as the standard Friedman-Robertson-Walker equation with the effective energy density and pressure which represent the back reaction effect.Comment: 16 pages, to appear in Phys. Rev.

    A systematic study of zooplankton-based indices of marine ecological change and water quality: Application to the European marine strategy framework Directive (MSFD)

    Get PDF
    Marine zooplankton are central components of holistic ecosystem assessments due to their intermediary role in the food chain, linking the base of the food chain with higher trophic levels. As a result, these organisms incorporate the inherent properties and changes occurring atall levels of the marine ecosystem, temporally integrating signatures of physical and chemical conditions. For this reason, zooplankton-based biometrics are widely accepted as useful tools for assessing and monitoring the ecological health and integrity of aquatic systems. The European Marine Strategy Framework Directive (EU-MSFD) requires the use of different types of bio-monitors, including zooplankton, to monitor progress towards achieving specific environmental and water quality targets in EU. However, there is currently no comprehensive synthesis of zooplankton indices development, use, and associated challenges. We addressed this issue with a two-step approach. First, we formulated the indicator-metrics-indices cycle (IMIC) to redefine the closely related but often ambiguously utilized terms - indicator, metric and index, highlighting the convergence between them and the iterative nature of their interaction. Secondly, we formulated frameworks for synthesizing, presenting and systematically applying zooplankton indices based on the IMIC framework. The main benefits of the IMIC are twofold: 1). to disambiguate the key elements: indicators, metrics, and indices, revealing their links to an operational ecological indicator system, and 2) to serve as an organizing tool for the coherent classification of indices according to the MSFD descriptors. Using the IMIC framework, we identified and described two broad categories of indices namely the core biodiversity indices already in use in the Baltic Sea and North Atlantic regions, including the ‘Zooplankton Mean Size and Total Stock (zooplankton MSTS)’ and 'Plankton Lifeforms index (PLI)', and stressor-response indices retrieved from the existing literature, elucidating their applicability to different MSFD descriptors. Finally, major challenges of developing new indices and applying existing ones in the context of the MSFD were critically addressed and some solutions were proposed

    Renormalization Group Approach to Cosmological Back Reaction Problems

    Get PDF
    We investigated the back reaction of cosmological perturbations on the evolution of the universe using the second order perturbation of the Einstein's equation. To incorporate the back reaction effect due to the inhomogeneity into the framework of the cosmological perturbation, we used the renormalization group method. The second order zero mode solution which appears by the non-linearities of the Einstein's equation is regarded as a secular term of the perturbative expansion, we renormalized a constant of integration contained in the background solution and absorbed the secular term to this constant. For a dust dominated universe, using the second order gauge invariant quantity, we derived the renormalization group equation which determines the effective dynamics of the Friedman-Robertson-Walker universe with the back reaction effect in a gauge invariant manner. We obtained the solution of the renormalization group equation and found that perturbations of the scalar mode and the long wavelength tensor mode works as positive spatial curvature, and the short wavelength tensor mode as radiation fluid.Comment: 18 pages, revtex, to appear in Phys. Rev.

    The Dynamics of Sustained Reentry in a Loop Model with Discrete Gap Junction Resistance

    Full text link
    Dynamics of reentry are studied in a one dimensional loop of model cardiac cells with discrete intercellular gap junction resistance (RR). Each cell is represented by a continuous cable with ionic current given by a modified Beeler-Reuter formulation. For RR below a limiting value, propagation is found to change from period-1 to quasi-periodic (QPQP) at a critical loop length (LcritL_{crit}) that decreases with RR. Quasi-periodic reentry exists from LcritL_{crit} to a minimum length (LminL_{min}) that is also shortening with RR. The decrease of Lcrit(R)L_{crit}(R) is not a simple scaling, but the bifurcation can still be predicted from the slope of the restitution curve giving the duration of the action potential as a function of the diastolic interval. However, the shape of the restitution curve changes with RR.Comment: 6 pages, 7 figure

    Improved Satellite Retrievals of NO2 and SO2 over the Canadian Oil Sands and Comparisons with Surface Measurements

    Get PDF
    Satellite remote sensing is increasingly being used to monitor air quality over localized sources such as the Canadian oil sands. Following an initial study, significantly low biases have been identified in current NO2 and SO2 retrieval products from the Ozone Monitoring Instrument (OMI) satellite sensor over this location resulting from a combination of its rapid development and small spatial scale. Air mass factors (AMFs) used to convert line-of-sight "slant" columns to vertical columns were re-calculated for this region based on updated and higher resolution input information including absorber profiles from a regional-scale (15 km 15 km resolution) air quality model, higher spatial and temporal resolution surface reflectivity, and an improved treatment of snow. The overall impact of these new Environment Canada (EC) AMFs led to substantial increases in the peak NO2 and SO2 average vertical column density (VCD), occurring over an area of intensive surface mining, by factors of 2 and 1.4, respectively, relative to estimates made with previous AMFs. Comparisons are made with long-term averages of NO2 and SO2 (2005-2011) from in situ surface monitors by using the air quality model to map the OMI VCDs to surface concentrations. This new OMI-EC product is able to capture the spatial distribution of the in situ instruments (slopes of 0.65 to 1.0, correlation coefficients of greater than 0.9). The concentration absolute values from surface network observations were in reasonable agreement, with OMI-EC NO2 and SO2 biased low by roughly 30%. Several complications were addressed including correction for the interference effect in the surface NO2 instruments and smoothing and clear-sky biases in the OMI measurements. Overall these results highlight the importance of using input information that accounts for the spatial and temporal variability of the location of interest when performing retrievals

    Description of nuclear systems within the relativistic Hartree-Fock method with zero range self-interactions of the scalar field

    Full text link
    An exact method is suggested to treat the nonlinear self-interactions (NLSI) in the relativistic Hartree-Fock (RHF) approach for nuclear systems. We consider here the NLSI constructed from the relativistic scalar nucleon densities and including products of six and eight fermion fields. This type of NLSI corresponds to the zero range limit of the standard cubic and quartic self-interactions of the scalar field. The method to treat the NLSI uses the Fierz transformation, which enables one to express the exchange (Fock) components in terms of the direct (Hartree) ones. The method is applied to nuclear matter and finite nuclei. It is shown that, in the RHF formalism, the NLSI, which are explicitly isovector-independent, generate scalar, vector and tensor nucleon self-energies strongly density-dependent. This strong isovector structure of the self-energies is due to the exchange terms of the RHF method. Calculations are carried out with a parametrization containing five free parameters. The model allows a description of both types of systems compatible with experimental data.Comment: 23 pages, 14 figures (v2: major quantitative changes
    corecore