9 research outputs found

    The value of manual backward contact tracing to control COVID-19 in practice, the Netherlands, February to March 2021:a pilot study

    Get PDF
    BackgroundContact tracing has been a key component of COVID-19 outbreak control. Backward contact tracing (BCT) aims to trace the source that infected the index case and, thereafter, the cases infected by the source. Modelling studies have suggested BCT will substantially reduce SARS-CoV-2 transmission in addition to forward contact tracing.AimTo assess the feasibility and impact of adding BCT in practice.MethodsWe identified COVID-19 cases who were already registered in the electronic database between 19 February and 10 March 2021 for routine contact tracing at the Public Health Service (PHS) of Rotterdam-Rijnmond, the Netherlands (pop. 1.3 million). We investigated if, through a structured questionnaire by dedicated contact tracers, we could trace additional sources and cases infected by these sources. Potential sources identified by the index were approached to trace the source's contacts. We evaluated the number of source contacts that could be additionally quarantined.ResultsOf 7,448 COVID-19 cases interviewed in the study period, 47% (n = 3,497) indicated a source that was already registered as a case in the PHS electronic database. A potential, not yet registered source was traced in 13% (n = 979). Backward contact tracing was possible in 62 of 979 cases, from whom an additional 133 potential sources were traced, and four were eligible for tracing of source contacts. Two additional contacts traced had to stay in quarantine for 1 day. No new COVID-19 cases were confirmed.ConclusionsThe addition of manual BCT to control the COVID-19 pandemic did not provide added value in our study setting.</p

    From more testing to smart testing:data-guided SARS-CoV-2 testing choices, the Netherlands, May to September 2020

    Get PDF
    BACKGROUND: SARS-CoV-2 RT-PCR assays are more sensitive than rapid antigen detection assays (RDT) and can detect viral RNA even after an individual is no longer infectious. RDT can reduce the time to test and the results might better correlate with infectiousness. AIM: We assessed the ability of five RDT to identify infectious COVID-19 cases and systematically recorded the turnaround time of RT-PCR testing. METHODS: Sensitivity of RDT was determined using a serially diluted SARS-CoV-2 stock with known viral RNA concentration. The probability of detecting infectious virus at a given viral load was calculated using logistic regression of viral RNA concentration and matched culture results of 78 specimens from randomly selected non-hospitalised cases. The probability of each RDT to detect infectious cases was calculated as the sum of the projected probabilities for viral isolation success for every viral RNA load found at the time of diagnosis in 1,739 confirmed non-hospitalised COVID-19 cases. RESULTS: The distribution of quantification cycle values and estimated RNA loads for patients reporting to drive-through testing was skewed to high RNA loads. With the most sensitive RDT (Abbott and SD Biosensor), 97.30% (range: 88.65–99.77) of infectious individuals would be detected. This decreased to 92.73% (range: 60.30–99.77) for Coris BioConcept and GenBody, and 75.53% (range: 17.55–99.77) for RapiGEN. Only 32.9% of RT-PCR results were available on the same day as specimen collection. CONCLUSION: The most sensitive RDT detected infectious COVID-19 cases with high sensitivity and may considerably improve containment through more rapid isolation and contact tracing

    Outbreaks of mumps genotype G viruses in the Netherlands between October 2019 and March 2020: clusters associated with multiple introductions.

    No full text
    BACKGROUND: From October 2019–March 2020, several clusters of mumps cases were identified in the Netherlands. Our objective was to describe cluster-associated mumps virus transmission using epidemiological and molecular information in order to help future mumps outbreak investigation and control efforts. METHODS: An epidemiological cluster includes ≥ 2 mumps cases with at least an epidemiological-link to a laboratory-confirmed mumps case. A molecular group includes ≥ 2 mumps cases with identical mumps virus sequences. Cases with symptom onset date between 1 October 2019 and 31 March 2020 reported through the National Notifiable Diseases Surveillance System were included. We described epidemiological and clinical characteristics of mumps cases. Sequence data was obtained from selected regions of mumps virus genomes (2270 nucleotides). Associations between epidemiological and molecular information were investigated. RESULTS: In total, 102 mumps cases were notified (90% laboratory-confirmed, 10% epidemiologically-linked). 71 out of 102 cases were identified as part of an epidemiological cluster and/or molecular group. Twenty-one (30%) of 71 cases were identified solely from epidemiological information, 25 (35%) solely from molecular surveillance, and 25 (35%) using both. Fourteen epidemiological clusters were identified containing a total of 46 (range: 2–12, median: 3) cases. Complete sequence data was obtained from 50 mumps genotype G viruses. Twelve molecular groups were identified containing 43 (range: 2–13) cases, dispersed geographically and timewise. Combined information grouped seven epidemiological clusters into two distinct molecular groups. The first lasting for 14 weeks, the other for 6. Additionally, one molecular group was detected, linked by geography and time but without an epidemiological-link. CONCLUSIONS: Combined epidemiological and molecular information indicated ongoing mumps virus transmission from multiple introductions for extended time periods. Sequence analysis provided valuable insights into epidemiological clustering. If combined information is available in a timely manner, this would improve outbreak detection, generate further insight into mumps transmission, and guide necessary control measures. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-021-06702-7

    Clinical evaluation of the SD Biosensor SARS-CoV-2 saliva antigen rapid test with symptomatic and asymptomatic, non-hospitalized patients

    Get PDF
    Background Performance of the SD Biosensor saliva antigen rapid test was evaluated at a large designated testing site in non-hospitalized patients, with or without symptoms. Method All eligible people over 18 years of age presenting for a booked appointment at the designated SARS-CoV-2 testing site were approached for inclusion and enrolled following verbal informed consent. One nasopharyngeal swab was taken to carry out the default antigen rapid test from which the results were reported back to the patient and one saliva sample was self-taken according to verbal instruction on site. This was used for the saliva antigen rapid test, the RT-PCR and for virus culture. Sensitivity of the saliva antigen rapid test was analyzed in two ways: I, compared to saliva RT-PCR; and ii, compared to virus culture of the saliva samples. Study participants were also asked to fill in a short questionnaire stating age, sex, date of symptom onset. Recommended time of ≥30mins since last meal, drink or cigarette if applicable was also recorded. The study was carried out in February-March 2021 for 4 weeks. Results We could include 789 people with complete records and results. Compared to saliva RTPCR, overall sensitivity and specificity of the saliva antigen rapid test was 66.1% and 99.6% which increased to 88.6% with Ct ≤30 cutoff. Analysis by days post onset did not result in higher sensitivities because the large majority of people were in the very early phase of disease ie <3 days post onset. When breaking down the data for symptomatic and asymptomatic individuals, sensitivity ranged from 69.2% to 50% respectively, however the total number of RT-PCR positive asymptomatic participants was very low (n = 5). Importantly, almost all culture positive samples were detected by the rapid test. Conclusion Overall, the potential benefits of saliva antigen rapid test, could outweigh the lower sensitivity compared to nasopharyngeal antigen rapid test in a comprehensive testing strategy, especially for home/self-testing and in vulnerable populations like elderly, disabled or children where in intrusive testing is either not possible or causes unnecessary stress

    Community-based SARS-CoV-2 testing in low-income neighbourhoods in Rotterdam: Results from a pilot study

    Get PDF
    Background: High incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and low testing uptake were reported in low-income neighbourhoods in Rotterdam. We aimed to improve willingness and access to testing by introducing community-based test facilities, and to evaluate the effectiveness of a rapid antigen detection test (RDT). Methods: Two to eleven test facilities operated consecutively in three low-income neighbourhoods in Rotterdam, offering the options of walk-in or appointments. Background characteristics were collected at intake and one nasopharyngeal swab was taken and processed using both RDT and reverse transcription polymerase chain reaction (RT-PCR). Visitors were asked to join a survey for evaluation purposes. Results: In total, 19 773 visitors were tested - 9662 (48.9%) without an appointment. Walk-in visitors were older, lived more often in the proximity of the test facilities, and reported coronavirus disease (COVID-19)-related symptoms less often than by-appointment visitors. For 67.7% of the visitors, this was the first time they got tested. A total of 1211 (6.1%) tested SARS-CoV-2-positive with RT-PCR, of whom 309 (25.5%) were asymptomatic. Test uptake increased among residents of the pilot neighbourhoods, especially in the older age groups, compared to people living in comparable neighbourhoods without community-based testing facilities. RDT detected asymptomatic individuals with 71.8% sensitivity, which was acceptable in this high prevalence setting. Visitors reported positive attitudes towards the test facilities and welcomed the easy access. Conclusions: Offering community-based SARS-CoV-2 testing seems a promising approach for increasing testing uptake among specific populations in low-income neighbourhoods

    Clinical Evaluation of Roche SD Biosensor Rapid Antigen Test for SARS-CoV-2 in Municipal Health Service Testing Site, the Netherlands.

    Get PDF
    Rapid detection of infection is essential for stopping the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The Roche SD Biosensor rapid antigen test for SARS-CoV-2 was evaluated in a nonhospitalized symptomatic population. We rapid-tested a sample onsite and compared results with those from reverse transcription PCR and virus culture. We analyzed date of onset and symptoms using data from a clinical questionnaire. Overall test sensitivity was 84.9% (95% CI 79.1-89.4) and specifi city was 99.5% (95% CI 98.7-99.8). Sensitivity increased to 95.8% (95% CI 90.5-98.2) for persons who sought care within 7 days of symptom onset. Test band intensity and time to result correlated strongly with viral load; thus, strong positive results could be read before the recommended time. Approximately 98% of all viable specimens with cycle threshold <30 were detected. Rapid antigen tests can detect symptomatic SARSCoV- 2 infections in the early phase of disease, thereby identifying the most infectious persons

    Diagnostic accuracy of rapid antigen tests in asymptomatic and presymptomatic close contacts of individuals with confirmed SARS-CoV-2 infection: Cross sectional study

    No full text
    AbstractObjective To assess the diagnostic test accuracy of two rapid antigen tests in asymptomatic and presymptomatic close contacts of people with SARS-CoV-2 infection on day 5 after exposure. Design Prospective cross sectional study. Setting Four public health service covid-19 test sites in the Netherlands. Participants 4274 consecutively included close contacts (identified through test-and-trace programme or contact tracing app) aged 16 years or older and asymptomatic for covid-19 when requesting a test. Main outcome measures Sensitivity, specificity, and positive and negative predictive values of Veritor System (Beckton Dickinson) and Biosensor (Roche Diagnostics) rapid antigen tests, with reverse-transcriptase polymerase chain reaction (RT-PCR) testing as reference standard. The viral load cut-off above which 95% of people with a positive RT-PCR test result were virus culture positive was used as a proxy of infectiousness. Results Of 2678 participants tested with Veritor, 233 (8.7%) had a RT-PCR confirmed SARS-CoV-2 infection of whom 149 were also detected by the rapid antigen test (sensitivity 63.9%, 95% confidence interval 57.4% to 70.1%). Of 1596 participants tested with Biosensor, 132 (8.3%) had a RT-PCR confirmed SARS-CoV-2 infection of whom 83 were detected by the rapid antigen test (sensitivity 62.9%, 54.0% to 71.1%). In those who were still asymptomatic at the time of sampling, sensitivity was 58.7% (51.1% to 66.0%) for Veritor (n=2317) and 59.4% (49.2% to 69.1%) for Biosensor (n=1414), and in those who developed symptoms were 84.2% (68.7% to 94.0%; n=219) for Veritor and 73.3% (54.1% to 87.7%; n=158) for Biosensor. When a viral load cut-off was applied for infectiouness (≥5.2 log10 SARS-CoV-2 E gene copies/mL), the overall sensitivity was 90.1% (84.2% to 94.4%) for Veritor and 86.8% (78.1% to 93.0%) for Biosensor, and 88.1% (80.5% to 93.5%) for Veritor and 85.1% (74.3% to 92.6%) for Biosensor, among those who remained asymptomatic throughout. Specificities were >99%, and positive and negative predictive values were >90% and >95%, for both rapid antigen tests in all analyses. Conclusions The sensitivities of both rapid antigen tests in asymptomatic and presymptomatic close contacts tested on day 5 onwards after close contact with an index case were more than 60%, increasing to more than 85% after a viral load cut-off was applied as a proxy for infectiousness

    Diagnostic accuracy of rapid antigen tests in asymptomatic and presymptomatic close contacts of individuals with confirmed SARS-CoV-2 infection: cross sectional study

    Get PDF
    AbstractObjective To assess the diagnostic test accuracy of two rapid antigen tests in asymptomatic and presymptomatic close contacts of people with SARS-CoV-2 infection on day 5 after exposure. Design Prospective cross sectional study. Setting Four public health service covid-19 test sites in the Netherlands. Participants 4274 consecutively included close contacts (identified through test-and-trace programme or contact tracing app) aged 16 years or older and asymptomatic for covid-19 when requesting a test. Main outcome measures Sensitivity, specificity, and positive and negative predictive values of Veritor System (Beckton Dickinson) and Biosensor (Roche Diagnostics) rapid antigen tests, with reverse-transcriptase polymerase chain reaction (RT-PCR) testing as reference standard. The viral load cut-off above which 95% of people with a positive RT-PCR test result were virus culture positive was used as a proxy of infectiousness. Results Of 2678 participants tested with Veritor, 233 (8.7%) had a RT-PCR confirmed SARS-CoV-2 infection of whom 149 were also detected by the rapid antigen test (sensitivity 63.9%, 95% confidence interval 57.4% to 70.1%). Of 1596 participants tested with Biosensor, 132 (8.3%) had a RT-PCR confirmed SARS-CoV-2 infection of whom 83 were detected by the rapid antigen test (sensitivity 62.9%, 54.0% to 71.1%). In those who were still asymptomatic at the time of sampling, sensitivity was 58.7% (51.1% to 66.0%) for Veritor (n=2317) and 59.4% (49.2% to 69.1%) for Biosensor (n=1414), and in those who developed symptoms were 84.2% (68.7% to 94.0%; n=219) for Veritor and 73.3% (54.1% to 87.7%; n=158) for Biosensor. When a viral load cut-off was applied for infectiouness (≥5.2 log10 SARS-CoV-2 E gene copies/mL), the overall sensitivity was 90.1% (84.2% to 94.4%) for Veritor and 86.8% (78.1% to 93.0%) for Biosensor, and 88.1% (80.5% to 93.5%) for Veritor and 85.1% (74.3% to 92.6%) for Biosensor, among those who remained asymptomatic throughout. Specificities were &gt;99%, and positive and negative predictive values were &gt;90% and &gt;95%, for both rapid antigen tests in all analyses. Conclusions The sensitivities of both rapid antigen tests in asymptomatic and presymptomatic close contacts tested on day 5 onwards after close contact with an index case were more than 60%, increasing to more than 85% after a viral load cut-off was applied as a proxy for infectiousness. </p
    corecore