35 research outputs found

    Comet-FISH for the evaluation of plant DNA damage after mutagenic treatments

    Get PDF
    The aim of this study was to perform a comparative investigation of the actions of three mutagens that are widely used in plant mutagenesis using the comet-FISH technique. The comet-FISH technique was used for the analysis of DNA damage and the kinetics of repair within specific DNA sequences. FISH with rDNA and telomeric/centromeric DNA probes was applied to comets that were obtained from an alkaline/neutral comet assay. Migration within specific DNA sequences was analysed after treatment with two chemical mutagens-maleic hydrazide (MH) and N-nitroso-N-methylurea (MNU), and γ-rays. Barley was used as a model plant in this study. The possible utility of specific DNA sequences in a comparative assessment of the distribution of DNA damage within a plant genome was evaluated. This study proved that the comet-FISH technique is suitable for a detailed quantification of DNA damage and repair within specific DNA sequences in plant mutagenesis. The analysis of FISH signals demonstrated that the involvement of specific DNA sequences in DNA damage was different and was dependent on the mutagen used. We showed that 5S rDNA and telomeric DNA sequences are more sensitive to mutagenic treatment, which was expressed by a stronger fragmentation and migration in comparison to the other probes used in the study. We found that 5S rDNA and telomeric DNA probes are more suitable for testing the genotoxicity of environmental factors. A comparison of the involvement of specific chromosome domains in direct DNA breakage/repair and in chromosome aberration formation after mutagen treatment indicates the compatibility of the results

    The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods

    Get PDF
    Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes. The EU-ToxRisk project developed a strategy to provide regulatorily valid data, and exemplified this using a panel of > 20 assays (with > 50 individual endpoints), each exposed to 19 well-known test compounds (e.g. rotenone, colchicine, mercury, paracetamol, rifampicine, paraquat, taxol). Examples of strategy implementation are provided for all aspects required to ensure data validity: (i) documentation of test methods in a publicly accessible database; (ii) deposition of standard operating procedures (SOP) at the European Union DB-ALM repository; (iii) test readiness scoring accoding to defined criteria; (iv) disclosure of the pipeline for data processing; (v) link of uncertainty measures and metadata to the data; (vi) definition of test chemicals, their handling and their behavior in test media; (vii) specification of the test purpose and overall evaluation plans. Moreover, data generation was exemplified by providing results from 25 reporter assays. A complete evaluation of the entire test battery will be described elsewhere. A major learning from the retrospective analysis of this large testing project was the need for thorough definitions of the above strategy aspects, ideally in form of a study pre-registration, to allow adequate interpretation of the data and to ensure overall scientific/toxicological validity.Toxicolog

    Intrachanges as part of complex chromosome-type exchange aberrations

    No full text
    The chromosome-type exchange aberrations induced by ionizing radiation during the G(0)/G(1) phase of the cell cycle are believed to be the result of illegitimate rejoining of chromosome breaks. From numerous studies using chromosome painting, it has emerged that even after a moderate dose of radiation, a substantial fraction of these exchanges is complex. Most of them are derived from the free interaction between the ends of three or more breaks. Other studies have demonstrated that chromosomes occupy distinct territories in the interphase nucleus. Since breaks that are in close proximity have an enhanced interaction probability, it seems likely that after ionizing radiation many of the interacting breaks will be present within one chromosome or chromosome arm. Unfortunately, the majority of these intrachanges remain undetected, even when sophisticated molecular cytogenetic detection methods (i.e. mFISH) are applied to paint all chromosome pairs in distinct colors. In the present paper, we evaluate the limitations of full-color painting for the detection of complex exchanges and the correct interpretations of break interactions. (C) 2002 Elsevier Science B.V. All rights reserved

    Supporting the professional development of teacher educators in a productive way

    No full text
    This study reports on what 13 teacher educators going through a procedure to become registered as a teacher educator in 2011–2012 learned, what goals they formulated for their further professional development and what activities they planned to achieve these goals. The methods used in this study are mainly the same as were used at the time the first cohort went through the registration procedure in 2002. The 2012 cohort participated in a supportive programme, whereas the 2002 cohort did not. This enables a comparison of the results of both studies and thus some insight into the possible benefits of integrating a registration procedure with a supportive programme for the professional development of teacher educators
    corecore