156 research outputs found

    Measurements of mass ablation rate and pressure in planar targets irradiated by 0.27-μm laser light

    Full text link
    Copyright 1986 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics, 60(11), 3840-3844, 1986 and may be found at http://dx.doi.org/10.1063/1.33755

    Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper

    Get PDF
    Copper monocrystals were subjected to shock compression at pressures of 10–60 GPa by a short (3 ns initial) duration laser pulse. Transmission electron microscopy revealed features consistent with previous observations of shock-compressed copper, albeit at pulse durations in the µs regime. The results suggest that the defect structure is generated at the shock front. A mechanism for dislocation generation is presented, providing a realistic prediction of dislocation density as a function of pressure. The threshold stress for deformation twinning in shock compression is calculated from the constitutive equations for slip, twinning, and the Swegle-Grady relationship

    Laser-Shock Compression and Hugoniot Measurements of Liquid Hydrogen to 55 GPa

    Full text link
    The principal Hugoniot for liquid hydrogen was obtained up to 55 GPa under laser-driven shock loading. Pressure and density of compressed hydrogen were determined by impedance-matching to a quartz standard. The shock temperature was independently measured from the brightness of the shock front. Hugoniot data of hydrogen provide a good benchmark to modern theories of condensed matter. The initial number density of liquid hydrogen is lower than that for liquid deuterium, and this results in shock compressed hydrogen having a higher compression and higher temperature than deuterium at the same shock pressure.Comment: 8 pages, 7 figures, 2 tables, accepted for publication in Physical Review

    Observation of collapsing radiative shocks in laboratory experiments

    Full text link
    This article reports the observation of the dense, collapsed layer produced by a radiative shock in a laboratory experiment. The experiment uses laser irradiation to accelerate a thin layer of solid-density material to above 100 km/s100km∕s, the first to probe such high velocities in a radiative shock. The layer in turn drives a shock wave through a cylindrical volume of Xe gas (at ∼ 6 mg/cm3∼6mg∕cm3). Radiation from the shocked Xe removes enough energy that the shocked layer increases in density and collapses spatially. This type of system is relevant to a number of astrophysical contexts, providing the potential to observe phenomena of interest to astrophysics and to test astrophysical computer codes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87760/2/082901_1.pd
    • …
    corecore