41 research outputs found
Long-Term Transplantation Outcomes in Patients With Primary Hyperoxaluria Type 1 Included in the European Hyperoxaluria Consortium (OxalEurope) Registry
INTRODUCTION: In primary hyperoxaluria type 1 (PH1), oxalate overproduction frequently causes kidney stones, nephrocalcinosis, and kidney failure. As PH1 is caused by a congenital liver enzyme defect, combined liver–kidney transplantation (CLKT) has been recommended in patients with kidney failure. Nevertheless, systematic analyses on long-term transplantation outcomes are scarce. The merits of a sequential over combined procedure regarding kidney graft survival remain unclear as is the place of isolated kidney transplantation (KT) for patients with vitamin B6-responsive genotypes. METHODS: We used the OxalEurope registry for retrospective analyses of patients with PH1 who underwent transplantation. Analyses of crude Kaplan–Meier survival curves and adjusted relative hazards from the Cox proportional hazards model were performed. RESULTS: A total of 267 patients with PH1 underwent transplantation between 1978 and 2019. Data of 244 patients (159 CLKTs, 48 isolated KTs, 37 sequential liver–KTs [SLKTs]) were eligible for comparative analyses. Comparing CLKTs with isolated KTs, adjusted mortality was similar in patients with B6-unresponsive genotypes but lower after isolated KT in patients with B6-responsive genotypes (adjusted hazard ratio 0.07, 95% CI: 0.01–0.75, P = 0.028). CLKT yielded higher adjusted event-free survival and death-censored kidney graft survival in patients with B6-unresponsive genotypes (P = 0.025, P < 0.001) but not in patients with B6-responsive genotypes (P = 0.145, P = 0.421). Outcomes for 159 combined procedures versus 37 sequential procedures were comparable. There were 12 patients who underwent pre-emptive liver transplantation (PLT) with poor outcomes. CONCLUSION: The CLKT or SLKT remains the preferred transplantation modality in patients with PH1 with B6-unresponsive genotypes, but isolated KT could be an alternative approach in patients with B6-responsive genotypes
Determinants of Kidney Failure in Primary Hyperoxaluria Type 1:Findings of the European Hyperoxaluria Consortium
INTRODUCTION: Primary hyperoxaluria type 1 (PH1) has a highly heterogeneous disease course. Apart from the c.508G>A (p.Gly170Arg) AGXT variant, which imparts a relatively favorable outcome, little is known about determinants of kidney failure. Identifying these is crucial for disease management, especially in this era of new therapies. METHODS: In this retrospective study of 932 patients with PH1 included in the OxalEurope registry, we analyzed genotype-phenotype correlations as well as the impact of nephrocalcinosis, urolithiasis, and urinary oxalate and glycolate excretion on the development of kidney failure, using survival and mixed model analyses.RESULTS: The risk of developing kidney failure was the highest for 175 vitamin-B6 unresponsive ("null") homozygotes and lowest for 155 patients with c.508G>A and c.454T>A (p.Phe152Ile) variants, with a median age of onset of kidney failure of 7.8 and 31.8 years, respectively. Fifty patients with c.731T>C (p.Ile244Thr) homozygote variants had better kidney survival than null homozygotes ( P = 0.003). Poor outcomes were found in patients with other potentially vitamin B6-responsive variants. Nephrocalcinosis increased the risk of kidney failure significantly (hazard ratio [HR] 3.17 [2.03-4.94], P < 0.001). Urinary oxalate and glycolate measurements were available in 620 and 579 twenty-four-hour urine collections from 117 and 87 patients, respectively. Urinary oxalate excretion, unlike glycolate, was higher in patients who subsequently developed kidney failure ( P = 0.034). However, the 41% intraindividual variation of urinary oxalate resulted in wide confidence intervals. CONCLUSION: In conclusion, homozygosity for AGXT null variants and nephrocalcinosis were the strongest determinants for kidney failure in PH1. </p
Strukturelle und biochemische Charakterisierung von Gephyrin und verschiedenen Gephyrin-Liganden-Komplexen
Efficient synaptic neurotransmission requires the exact apposition of presynaptic terminals and matching neurotransmitter receptor clusters on the postsynaptic side. The receptors are embedded in the postsynaptic density, which also contains scaffolding and regulatory proteins that ensure high local receptor concentrations. At inhibitory synapses the cytosolic scaffolding protein gephyrin assumes an essential organizing role within the postsynaptic density by the formation of self-oligomers which provide a high density of binding sites for certain -amino butyric acid type A (GABAA) and the large majority of glycine receptors (GlyR). Gephyrin contains two oligomerization domains: In isolation, the 20 kDa N-terminal G domain (GephG) and the 46 kDa E domain (GephE) trimerize and dimerize, respectively. In the full-length protein the domains are interconnected by a central ~150 amino acid linker, and only GephG trimerization is utilized, whereas GephE dimerization is prevented, thus suggesting the need for a trigger to release GephE autoinhibition, which would pave the way for the formation of higher oligomers and for efficient receptor clustering. The structural basis for this GephE autoinhibition has remained elusive so far, but the linker was reported to be sufficient for autoinhibition. This work dealt with the biochemical and structural characterization of apo-gephyrin and gephyrin in complexes with ligands which are known to promote the formation of synaptic gephyrin clusters (collybistin and neuroligin 2) and reorganize them (dynein light chain 1).
For full-length gephyrin no structural information has been available so far. Atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) analyses described in this thesis disclosed that the gephyrin trimer forms a highly flexible assembly, which, due to the long linker, can switch between compact and extended conformational states in solution, with a preference for compact states. This partial compaction and potentially GephE autoinhibition are achieved by interactions of parts of the linker with the G and E domains, as suggested by circular dichroism spectroscopy. However, the linker on its own cannot account for GephE blockage, as size exclusion chromatography experiments coupled with multi angle light scattering detection (SEC-MALS) and SAXS analyses revealed that a gephyrin variant only encompassing the linker and GephE (GephLE) forms dimers and not monomers as suggested by an earlier study. The oligomeric state of GephLE and the observation that several gephyrin variants, in which linker segments of varying length were deleted, predominantly formed trimers, suggested the presence of a linker independent mechanism of GephE dimerization blockade. Taken together, the data indicated that linker-dependent and linker-independent mechanisms mediate gephyrin autoinhibition.
In the second project gephyrin’s interaction with DYNLL1 (Dynein LC8 Light Chain 1) was characterized. DYNLL1 is a 25 kDa dimer incorporated into the dynein motor and provides two binding sites, each of which can accommodate an octapeptide derived from gephyrin’s linker region (referred to as GephDB). Originally, DYNLL1 was regarded as a cargo adaptor, linking gephyrin-GlyR complexes to the dynein motor, thus driving their retrograde transport and leading to a decrease of synaptic gephyrin-GlyR complexes.
Building on these studies, this thesis assessed the cargo hypothesis as well as the so far unclear stoichiometry of the gephyrin-DYNLL1 complex. The cargo scenario would require ternary complex formation between gephyrin, DYNLL1 and the dynein intermediate chain (DIC) of the dynein motor. However, such a complex could not be detected by analytical size exclusion chromatography (aSEC) experiments – presumably because gephyrin and DIC competed for a common binding site in DYNLL1. This finding was consistent with a single DYNLL1 dimer capturing two linker segments of a single gephyrin trimer as suggested by a 26 kDa mass increase of the gephyrin species in the presence of DYNLL1 in SEC-MALS experiments. aSEC experiments at even higher concentrations (~20 µM gephyrin and ~80 µM DYNLL1) indicated that the affinity of GephDB was significantly impaired in the context of full-length gephyrin but also in a variant that bears only GephG and the first 39 residues of the linker (GephGL220). Presumably due to avidity effects two linkers stably associated with a single DYNLL1 dimer, whereas the third DYNLL1 binding motif remained predominantly unoccupied unless high concentrations of GephGL220 (50 µM) and DYNLL1 (200 µM) were used. These findings indicate that an interplay between GephG and the N-terminal linker segment mediates the attenuation of GephDB affinity towards DYNLL1 and that preventing DYNLL1 from the induction of higher gephyrin oligomers is either advantageous for DYNLL1-mediated reorganization of gephyrin-GlyR clusters or that DYNLL1 exerts possibly two (concentration-dependent) actions on gephyrin.
The gephyrin-collybistin-neuroligin 2 complex was the subject of the third project. Previously, collybistin and gephyrin were observed to mutually trigger their translocation to the postsynaptic membrane, where the disordered cytoplasmic tail of the postsynaptic cell adhesion molecule NL2 (NL2cyt) causes the anchoring of collybistin 2 (CB2) by binding to its SH3 domain, thereby releasing SH3 domain mediated autoinhibiton of CB2 binding to the membrane phospholipid phosphatidylinositol-3-phosphate. Critical for this event is the binding of gephyrin to both CB2 and NL2, presumably via GephE.
Following up on these previous studies biochemical data presented in this thesis confirm the formation of the ternary complex. Unexpectedly, analyses by means of native polyacrylamide gel electrophoresis pointed to: (1) The existence of a complex containing NL2cyt and CB2 lacking the SH3 domain and consequently an additional NL2 binding site in CB2. (2) Attenuated gephyrin-collybistin complex formation in the presence of the SH3 domain. (3) A requirement for high NL2cyt concentrations (> 30 µM) during the formation of the ternary complex. This might allow for the regulation by other factors such as additional binding partners or posttranslational modifications. Although of preliminary character, these results provide a starting point for future studies, which will hopefully elucidate the interplay between gephyrin, collybistin, NL2 and certain GABAA receptors.Eine effiziente synaptische Neurotransmission macht es erforderlich, dass sich presynaptische Nervenenden und die Schar (engl. Cluster) der dazugehörigen Neurotransmitterrezeptoren auf der postsynaptischen Seite exakt gegenüberliegen. Die Rezeptoren sind in der postsynaptischen Dichte eingebettet, die auch Gerüstproteine und regulatorische Proteine enthält, die hohe lokale Rezeptor-Konzentrationen gewährleisten. An inhibitorischen Synapsen übernimmt das cytosolische Gerüstprotein Gephyrin eine essentielle Rolle in der postsynaptischen Dichte durch die Bildung von Homo-Oligomeren, die für eine hohe Dichte an Bindungsstellen für bestimmte -Aminobuttersäure Typ A- (GABAA)- und die große Mehrheit der Glyzin-Rezeptoren (GlyR) sorgen. Gephyrin enthält zwei Oligomerisierungsdomänen: In isolierter Form bildet die N-terminale 20 kDa große G-Domäne (GephG) und die C-terminale 46 kDa große E-Domäne (GephE) Trimere beziehungsweise Dimere. Im Volllängenprotein sind die Domänen durch einen zentrale ~150 Aminosäure lange Region (auch Linker genannt) verknüpft, und nur von der GephG-Trimerisiung wird Gebrauch gemacht, wohingegen die GephE-Dimerisierung unterbunden ist, was nahelegt, dass ein Auslöser benötigt wird, der die Autoinhibierung von GephE aufhebt und dadurch den Weg zur Bildung höherer Oligomere ebnet. Die strukturelle Basis für die GephE- Autoinhibierung ist bislang nicht bekannt, aber eine veröffentlichte Studie kam zu dem Schluss, dass der Linker ausreicht, um die GephE-Dimerisierung zu inhibieren. Diese Arbeit beinhaltet die biochemische und strukturelle Charakterisierung von apo-Gephyrin und Gephyrin in Komplexen mit Liganden, von denen bekannt ist, dass sie entweder die Bildung von synaptischen Gephyrin-Selbstoligomeren begünstigen (Collybistin und Neuroligin 2) oder die Gephyrin-Selbstoligomere reorganisieren (Dynein leichte Kette 1).
Für Volllängen-Gephyrin gab es bislang keine strukturellen Informationen. Rasterkraftmikroskopie (engl. AFM)- und Röntgenkleinwinkelbeugungs (engl. SAXS)-Analysen, die in dieser Arbeit beschrieben sind, deckten auf, dass das Gephyrin-Trimer eine hoch flexible Einheit ist, die – durch den langen Linker – zwischen kompakten und extendierten Zuständen hin- und herwechselt, mit einer leichten Präferenz für kompakte Zustände. Spektroskopische Messungen des zirkulären Dichroismus legten nahe, dass die partielle Kompaktierung und möglicherweise auch die GephE-Autoinhibition durch Interaktionen von Teilen des Linkers mit den G- und E-Domänen erreicht werden. Aber der Linker alleine kann nicht für die GephE-Blockade verantwortlich zeichnen, weil Größenausschluss-Chromatographie-Experimente gekoppelt mit Multiwinkel-Lichtstreudetektion (englische Abkürzung SEC-MALS) offenlegten, dass eine Gephyrin-Variante, die nur den Linker und GephE umfasst (GephLE), Dimere und keine Monomere ausbildet, wie in einer früheren Studie postuliert wurde. Der oligomere Zustand von GephLE und die Beobachtung, dass alle Gephyrin-Varianten, in denen Linker-Segmente verschiedener Länge deletiert wurden, überwiegend Trimere bildeten, legen nahe, dass ein Linker-unabhängiger Mechanismus für die GephE-Dimerisierungsblockade existiert. Zusammengenommen deuten die Daten darauf hin, dass Linker-abhängige und -unabhängige Mechanismen die GephE-Autoinhibtion vermitteln.
Im zweiten Projekt wurde die Interaktion von Gephyrin mit DYNLL1 (Dynein LC8 Light Chain 1) charakterisiert. DYNLL1 is ein 25 kDa-Dimer, das im Dynein-Motor integriert ist, und bietet zwei Bindestellen, die beide ein von der Gephyrin-Linker-Region abgeleitetes Oktapeptid (im Weiteren GephDB) aufnehmen können. Ursprünglich wurde DYNLL1 als ein Ladungsadapter betrachtet, der Gephyrin-GlyR-Komplexe mit dem Dynein-Motor verknüpft und dadurch ihren retrograden Transport vorantreibt und somit zu einer Abnahme synaptischer Gephyrin-GlyR-Komplexe führt.
Auf diesen Studien aufbauend, wurde in dieser Arbeit die Ladungsadapter-Hypothese analysiert ebenso wie die bislang unklare Stöchiometrie des Gephyrin-DYNLL1-Komplexes. Das Ladungsadapter-Szenario würde einen ternären Komplex aus Gephyrin, DYNLL1 und der mittleren Dynein-Kette (englische Abkürzung DIC) voraussetzen. Ein solcher Komplex konnte mittels analytischer Größenausschlusschromatographie (englische Abkürzung aSEC) nicht detektiert werden – vermutlich, weil Gephyrin und DIC um eine gemeinsame Bindungsstelle in DYNLL1 konkurrierten. Dieser Befund war konsistent mit einem Modell, in dem ein einzelnes DYNLL1-Dimer zwei Linker eines (einzelnen) Gephyrin-Trimers bindet, wie es auch durch eine 26 kDa-Massen-Zunahme der Gephyrin-Spezies in der Anwesenheit von DYNLL1 in SEC-MALS-Experimenten nahegelegt wurde. aSEC-Experimente auch bei hohen Konzentrationen (~20 µM Gephyrin und ~80 µM DYNLL1) deuteten darauf hin, dass die Affinität von GephDB im Kontext von Volllängen-Gephyrin signifikant beeinträchtigt war, aber auch bei einer Gephyrin-Variante, die nur GephG und die ersten 39 Reste des Linkers entielt (GephGL220). Voraussichtlich aufgrund von Aviditätseffekten banden zwei Linker stabil an ein einzelnes DYNLL1-Dimer, wohingegen das dritte DYNLL1-Bindungsmotiv unbesetzt blieb, so lange nicht hohe Konzentrationen an GephGL220 (50 µM) und DYNLL1 (200 µM) eingesetzt wurden. Diese Ergebnisse deuteten an, dass ein Zusammenspiel von GephG und dem N-terminalen Linker-Segment die Abschwächung der GephDB-Affinität zu DYNLL1 vermittelt und dass die Verhinderung der Induktion höherer Oligomere durch DYNLL1 entweder vorteilhaft für die Reorganization von Gephyrin-GlyR-Clustern ist oder dass DYNLL1 zwei (konzentrationsabhängige) Wirkungen auf Gephyrin ausübt.
Der Gephyrin-Collybistin-Neuroligin 2-Komplex war Gegenstand des dritten Projektes. Im Vorfeld dieser Arbeit wurde festgestellt, dass Collybistin und Gephyrin gegenseitig ihre Translokation zur postsynaptischen Membran einleiten, wo der ungeordnete, cytosolische Anteil des postsynaptischen Zelladhäsionsmembranmoleküls Neuroligin 2 (NL2cyt) die Verankerung von Collybistin 2 (CB2) durch das Binden an seine “src homology 3”-Domäne (SH3-Domäne) bewirkt und dadurch die SH3-Domänen-vermittelte Autoinhibition der CB2-Bindung an das Membran-Phospholipid Phosphatidylinositol-3-phosphat aufhebt. Entscheidend für dieses Ereignis ist, dass Gephyrin sowohl an CB als auch an NL2cyt bindet, vermutlich vermittelt durch GephE.
In einer Fortsetzung dieser frühreren Studien bestätigen biochemische Daten in dieser Arbeit die Bildung des ternären Komplexes. Unerwarteterweise deuteten Analysen mittels nativer Polyacrylamidgelektrophorese auf: (1) Die Existenz eines Komplexes aus NL2cyt und CB2 ohne SH3-Domäne und damit auf eine zusätzliche NL2-Bindungsstelle in CB2. (2) Abgeschwächte Gephyrin-Collybistin-Komplexbildung in der Anwesenheit der SH3-Domäne. (3) Hohe NL2-Konzentrationen (>30 µM) als Voraussetzung für die Bildung des ternären Komplexes. Dies könnte die Regulation durch andere Faktoren wie zusätzliche Bindungspartner oder posttranslationale Modifikationen ermöglichen. Wenngleich die Ergebnisse von vorläufigem Charakter sind, stellen sie einen Startpunkt für künftige Arbeiten dar, welche hoffentlich das Zusammenspiel von Gephyrin, Collybistin, NL2 und bestimmten GABAA-Rezeptoren weiter aufklären werden
A conformational switch regulates the ubiquitin ligase HUWE1
The human ubiquitin ligase HUWE1 has key roles in tumorigenesis, yet it is unkown how its activity is regulated. We present the crystal structure of a C-terminal part of HUWE1, including the catalytic domain, and reveal an asymmetric auto-inhibited dimer. We show that HUWE1 dimerizes in solution and self-associates in cells, and that both occurs through the crystallographic dimer interface. We demonstrate that HUWE1 is inhibited in cells and that it can be activated by disruption of the dimer interface. We identify a conserved segment in HUWE1 that counteracts dimer formation by associating with the dimerization region intramolecularly. Our studies reveal, intriguingly, that the tumor suppressor p14ARF binds to this segment and may thus shift the conformational equilibrium of HUWE1 toward the inactive state. We propose a model, in which the activity of HUWE1 underlies conformational control in response to physiological cues—a mechanism that may be exploited for cancer therapy
Meckel’s Diverticulum in Children: A Monocentric Experience and Mini-Review of Literature
Vitelline duct anomalies (VDA, including Meckel’s diverticulum (MD)) result from failed embryologic obliteration. This study aimed for characteristics in symptomatic versus asymptomatic VDA, analyzing clinico-laboratory data from 73 children, aged 1 day to 17 years, treated at a tertiary Pediatric Surgery Institution from 2002–2017. A male preponderance was obtained (ratio 3.6:1). MD accounted for 85% of VDA. Incidence of symptomatic VDA decreased with older age. Leading symptoms were intestinal obstruction and hemorrhage. Mucosal heterotopia (present in 39% of symptomatic MD) was associated with anemia and lowered CRP-levels. On ROC-analysis, hemoglobin < 8.6 g/dL, CRP < 0.6 mg/dL and MD distance to ileocecal valve >40 cm were predictors of ectopic tissue in symptomatic MD. Our data confirmed known characteristics as male preponderance, declined incidence of symptomatic cases with age and predominance of gastric ectopia in symptomatic MD. Moreover, anemia and prolonged distance of MD to ileocecal valve were predictors of ectopic mucosa in symptomatic MD
Pediatric Urachal Anomalies: Monocentric Experience and Mini-Review of Literature
Background: Surgery is the current mainstay for the treatment of urachal anomalies (UA). Recent literature data support the theory of a spontaneous resolution within the first year of life. The aim of this study, comprising solely surgically treated children, was to identify age specific patterns regarding symptoms and outcomes that may support the non-surgical treatment of UA. Methods: Retrospective review on the clinico-laboratory characteristics of 52 children aged < 17 years undergoing resection of symptomatic UA at our pediatric surgical unit during 2006–2017. Data was dichotomized into age > 1 (n = 17) versus < 1 year (n = 35), and complicated (pre-/post-surgical abscess formation or peritonitis, n = 10) versus non-complicated course (n = 42). Results: Children aged < 1 year comprised majority (67%) of cohort and had lower complication rates (p = 0.062). Complicated course at surgery exclusively occurred in patients aged > 1 year (p = 0.003). Additionally, complicated group was older (p = 0.018), displayed leukocytosis (p < 0.001) and higher frequencies regarding presence of abdominal pain (p = 0.008) and abdominal mass (p = 0.034) on admission. Regression analysis identified present abdominal pain (OR (95% CI), 11.121 (1.152–107.337); p = 0.037) and leukocytosis (1.435 (1.070–1.925); p = 0.016) being associated with complicated course. Conclusions: This study provides evidence that symptomatic disease course follows an age-dependent complication pattern with lower complication rates at age < 1 year. Larger, studies have to clarify, if waiting for spontaneous urachal obliteration during the first year of life comprises a reasonable alternative to surgery