25 research outputs found
Evolutionary genomic remodelling of the human 4q subtelomere (4q35.2)
BACKGROUND: In order to obtain insights into the functionality of the human 4q35.2 domain harbouring the facioscapulohumeral muscular dystrophy (FSHD) locus, we investigated in African apes genomic and chromatin organisations, and the nuclear topology of orthologous regions. RESULTS: A basic block consisting of short D4Z4 arrays (10–15 repeats), 4q35.2 specific sequences, and approximately 35 kb of interspersed repeats from different LINE subfamilies was repeated at least twice in the gorilla 4qter. This genomic organisation has undergone evolutionary remodelling, leading to the single representation of both the D4Z4 array and LINE block in chimpanzee, and the loss of the LINE block in humans. The genomic remodelling has had an impact on 4qter chromatin organisation, but not its interphase nuclear topology. In comparison with humans, African apes show very low or undetectable levels of FRG1 and FRG2 histone 4 acetylation and gene transcription, although histone deacetylase inhibition restores gene transcription to levels comparable with those of human cells, thus indicating that the 4qter region is capable of acquiring a more open chromatin structure. Conversely, as in humans, the 4qter region in African apes has a very peripheral nuclear localisation. CONCLUSION: The 4q subtelomere has undergone substantial genomic changes during evolution that have had an impact on chromatin condensation and the region's transcriptional regulation. Consequently, the 4qter genes in African apes and humans seem to be subjected to a different strategy of regulation in which LINE and D4Z4 sequences may play a pivotal role. However, the effect of peripheral nuclear anchoring of 4qter on these regulation mechanisms is still unclear. The observed differences in the regulation of 4qter gene expression between African apes and humans suggest that the human 4q35.2 locus has acquired a novel functional relevance
Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth
YAP/TAZ are nuclear effectors of the Hippo pathway regulating organ growth and tumorigenesis. Yet, their function as transcriptional regulators remains underinvestigated. By ChIP-seq analyses in breast cancer cells, we discovered that the YAP/TAZ transcriptional response is pervasively mediated by a dual element: TEAD factors, through which YAP/TAZ bind to DNA, co-occupying chromatin with activator protein-1 (AP-1, dimer of JUN and FOS proteins) at composite cis-regulatory elements harbouring both TEAD and AP-1 motifs. YAP/TAZ/TEAD and AP-1 form a complex that synergistically activates target genes directly involved in the control of S-phase entry and mitosis. This control occurs almost exclusively from distal enhancers that contact target promoters through chromatin looping. YAP/TAZ-induced oncogenic growth is strongly enhanced by gain of AP-1 and severely blunted by its loss. Conversely, AP-1-promoted skin tumorigenesis is prevented in YAP/TAZ conditional knockout mice. This work highlights a new layer of signalling integration, feeding on YAP/TAZ function at the chromatin level
Myocardial infarction with nonobstructive coronary arteries: from pathophysiology to therapeutic strategies
: Myocardial infarction with nonobstructive coronary arteries (MINOCA) is a heterogeneous group of clinical entities characterized by clinical evidence of acute myocardial infarction (AMI) with normal or near-normal coronary arteries on coronary angiography (stenosis < 50%) and without an over the alternative diagnosis for the acute presentation. Its prevalence ranges from 6% to 11% among all patients with AMI, with a predominance of young, nonwhite females with fewer traditional risks than those with an obstructive coronary artery disease (MI-CAD). MINOCA can be due to either epicardial causes such as rupture or fissuring of unstable nonobstructive atherosclerotic plaque, coronary artery spasm, spontaneous coronary dissection and cardioembolism in-situ or microvascular causes. Besides, also type-2 AMI due to supply-demand mismatch and Takotsubo syndrome must be considered as a possible MINOCA cause. Because of the complex etiology and a limited amount of evidence, there is still some confusion around the management and treatment of these patients. Therefore, the key focus of this condition is to identify the underlying individual mechanisms to achieve patient-specific treatments. Clinical history, electrocardiogram, echocardiography, and coronary angiography represent the first-level diagnostic investigations, but coronary imaging with intravascular ultrasound and optical coherent tomography, coronary physiology testing, and cardiac magnetic resonance imaging offer additional information to understand the underlying cause of MINOCA. Although the prognosis is slightly better compared with MI-CAD patients, MINOCA is not always benign and depends on the etiopathology. This review analyzes all possible pathophysiological mechanisms that could lead to MINOCA and provides the most specific and appropriate therapeutic approach in each scenario
Sex-Related Disparities in Cardiac Masses: Clinical Features and Outcomes
Background. Cardiac masses (CM) represent a heterogeneous clinical scenario, and sex-related differences of these patients remain to be established. Purpose: To evaluate sex-related disparities in CMs regarding clinical presentation and outcomes. Material and Methods. The study cohort included 321 consecutive patients with CM enrolled in our Centre between 2004 and 2022. A definitive diagnosis was achieved by histological examination or, in the case of cardiac thrombi, with radiological evidence of thrombus resolution after anticoagulant treatment. All-cause mortality at follow-up was evaluated. Multivariable regression analysis assessed the potential prognostic disparities between men and women. Results. Out of 321 patients with CM, 172 (54%) were female. Women were more frequently younger (p = 0.02) than men. Regarding CM histotypes, females were affected by benign masses more frequently (with cardiac myxoma above all), while metastatic tumours were more common in men (p < 0.001). At presentation, peripheral embolism occurred predominantly in women (p = 0.03). Echocardiographic features such as greater dimension, irregular margin, infiltration, sessile mass and immobility were far more common in men. Despite a better overall survival in women, no sex-related differences were observed in the prognosis of benign or malignant masses. In fact, in multivariate analyses, sex was not independently associated with all-cause death. Conversely, age, smoking habit, malignant tumours and peripheral embolism were independent predictors of mortality. Conclusions. In a large cohort of cardiac masses, a significant sex-related difference in histotype prevalence was found: Benign CMs affected female patients more frequently, while malignant tumours affected predominantly men. Despite better overall survival in women, sex did not influence prognosis in benign and malignant masses
Cardiac Magnetic Resonance to Predict Cardiac Mass Malignancy: The CMR Mass Score
Background: Multimodality imaging is currently suggested for the noninvasive diagnosis of cardiac masses. The identification of cardiac masses' malignant nature is essential to guide proper treatment. We aimed to develop a cardiac magnetic resonance (CMR)-derived model including mass localization, morphology, and tissue characterization to predict malignancy (with histology as gold standard), to compare its accuracy versus the diagnostic echocardiographic mass score, and to evaluate its prognostic ability. Methods: Observational cohort study of 167 consecutive patients undergoing comprehensive echocardiogram and CMR within 1-month time interval for suspected cardiac mass. A definitive diagnosis was achieved by histological examination or, in the case of cardiac thrombi, by histology or radiological resolution after adequate anticoagulation treatment. Logistic regression was performed to assess CMR-derived independent predictors of malignancy, which were included in a predictive model to derive the CMR mass score. Kaplan-Meier curves and Cox regression were used to investigate the prognostic ability of predictors. Results: In CMR, mass morphological features (non-left localization, sessile, polylobate, inhomogeneity, infiltration, and pericardial effusion) and mass tissue characterization features (first-pass perfusion and heterogeneity enhancement) were independent predictors of malignancy. The CMR mass score (range, 0-8 and cutoff, ≥5), including sessile appearance, polylobate shape, infiltration, pericardial effusion, first-pass contrast perfusion, and heterogeneity enhancement, showed excellent accuracy in predicting malignancy (areas under the curve, 0.976 [95% CI, 0.96-0.99]), significantly higher than diagnostic echocardiographic mass score (areas under the curve, 0.932; P=0.040). The agreement between the diagnostic echocardiographic mass and CMR mass scores was good (κ=0.66). A CMR mass score of ≥5 predicted a higher risk of all-cause death (P<0.001; hazard ratio, 5.70) at follow-up. Conclusions: A CMR-derived model, including mass morphology and tissue characterization, showed excellent accuracy, superior to echocardiography, in predicting cardiac masses malignancy, with prognostic implications
Cardiac Magnetic Resonance to Predict Cardiac Mass Malignancy: The CMR Mass Score
BACKGROUND: Multimodality imaging is currently suggested for the noninvasive diagnosis of cardiac masses. The identification of cardiac masses' malignant nature is essential to guide proper treatment. We aimed to develop a cardiac magnetic resonance (CMR)-derived model including mass localization, morphology, and tissue characterization to predict malignancy (with histology as gold standard), to compare its accuracy versus the diagnostic echocardiographic mass score, and to evaluate its prognostic ability. METHODS: Observational cohort study of 167 consecutive patients undergoing comprehensive echocardiogram and CMR within 1-month time interval for suspected cardiac mass. A definitive diagnosis was achieved by histological examination or, in the case of cardiac thrombi, by histology or radiological resolution after adequate anticoagulation treatment. Logistic regression was performed to assess CMR-derived independent predictors of malignancy, which were included in a predictive model to derive the CMR mass score. Kaplan-Meier curves and Cox regression were used to investigate the prognostic ability of predictors. RESULTS: In CMR, mass morphological features (non-left localization, sessile, polylobate, inhomogeneity, infiltration, and pericardial effusion) and mass tissue characterization features (first-pass perfusion and heterogeneity enhancement) were independent predictors of malignancy. The CMR mass score (range, 0-8 and cutoff, ≥5), including sessile appearance, polylobate shape, infiltration, pericardial effusion, first-pass contrast perfusion, and heterogeneity enhancement, showed excellent accuracy in predicting malignancy (areas under the curve, 0.976 [95% CI, 0.96-0.99]), significantly higher than diagnostic echocardiographic mass score (areas under the curve, 0.932; P=0.040). The agreement between the diagnostic echocardiographic mass and CMR mass scores was good (κ=0.66). A CMR mass score of ≥5 predicted a higher risk of all-cause death (P<0.001; hazard ratio, 5.70) at follow-up. CONCLUSIONS: A CMR-derived model, including mass morphology and tissue characterization, showed excellent accuracy, superior to echocardiography, in predicting cardiac masses malignancy, with prognostic implications
Optimization of Fibrin Scaffolds to Study Friction in Cultured Mesothelial Cells
To study the friction of cell monolayers avoiding damage due to stress concentration, cells can be cultured on fibrin gels, which have a structure and viscoelasticity similar to that of the extracellular matrix. In the present research, we studied different gel compositions and surface coatings in order to identify the best conditions to measure friction in vitro. We examined the adhesion and growth behavior of mesothelial cell line MET-5A on fibrin gels with different fibrinogen concentrations (15, 20, and 25 mg/mL) and with different adhesion coatings (5 μg/mL fibronectin, 10 μg/mL fibronectin, or 10 μg/mL fibronectin + 10 μg/mL collagen). We also investigated whether different substrates influenced the coefficient of friction and the ability of cells to stick to the gel during sliding. Finally, we studied the degradation rates of gels with and without cells. All substrates tested provided a suitable environment for the adherence and proliferation of mesothelial cells, and friction measurements did not cause significant cell damage or detachment. However, in gels with a lower fibrinogen concentration, cell viability was higher and cell detachment after friction measurement was lower. Fibrinolysis was negligible in all the substrates tested
Optimization of Fibrin Scaffolds to Study Friction in Cultured Mesothelial Cells
To study the friction of cell monolayers avoiding damage due to stress concentration, cells can be cultured on fibrin gels, which have a structure and viscoelasticity similar to that of the extracellular matrix. In the present research, we studied different gel compositions and surface coatings in order to identify the best conditions to measure friction in vitro. We examined the adhesion and growth behavior of mesothelial cell line MET-5A on fibrin gels with different fibrinogen concentrations (15, 20, and 25 mg/mL) and with different adhesion coatings (5 μg/mL fibronectin, 10 μg/mL fibronectin, or 10 μg/mL fibronectin + 10 μg/mL collagen). We also investigated whether different substrates influenced the coefficient of friction and the ability of cells to stick to the gel during sliding. Finally, we studied the degradation rates of gels with and without cells. All substrates tested provided a suitable environment for the adherence and proliferation of mesothelial cells, and friction measurements did not cause significant cell damage or detachment. However, in gels with a lower fibrinogen concentration, cell viability was higher and cell detachment after friction measurement was lower. Fibrinolysis was negligible in all the substrates tested