92 research outputs found

    Modulation of inflammation by anti-TNF α mAb-dendrimer nanoparticles loaded in tyramine-modified gellan gum hydrogels in a cartilage-on-a-chip model

    Get PDF
    Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease characterized by joint inflammation. Since the inflammatory condition plays an important role in the disease process, it is important to develop and test new therapeutic approaches that specifically target and treat joint inflammation. In this study, a human 3D inflammatory cartilage-on-a-chip model was established to test the therapeutic efficacy of anti-TNFα mAb-CS/PAMAM dendrimer NPs loaded-Tyramine-Gellan Gum in the treatment of inflammation. The results showed that the proposed therapeutic approach applied to the human monocyte cell line (THP-1) and human chondrogenic primary cells (hCH) cell-based inflammation system revealed an anti-inflammatory capacity that increased over 14 days. It was also possible to observe that Coll type II was highly expressed by inflamed hCH upon the culture with anti-TNF α mAb-CS/PAMAM dendrimer NPs, indicating that the hCH cells were able maintain their biological function. The developed preclinical model allowed us to provide more robust data on the potential therapeutic effect of anti-TNF α mAb-CS/PAMAM dendrimer NPs loaded-Ty-GG hydrogel in a physiologically relevant model.The authors thank the financial support under the Norte2020 project (NORTE-08-5369-FSE000044). M. R. C. acknowledges TERM RES Hub Ref. Norte-01-0145-FEDER-02219015 working contract. D. C. F. acknowledges Portuguese Foundation for Science and Technology (FCT) for his phD scholarship (PD/ BD/143081/2018) and F. R. M. for her contract under the Transitional Rule DL 57/2016 (CTTI-57/18-I3BS(5)). C. M. A., D. C. V. and S. C. K. thank the support of FCT (PTDC/BTM-ORG/ 28070/2017). D. C. V acknowledges the CEEC individual contract (CEECIND/00352/2017). S. C. K wishes to record the financial support from EU Framework Programme for Research and Innovation H2020 on FoReCaST under grant agreement no. 668983 and BREAST-IT FCT-Portugal project (PTDC/BTM-ORG/ 28168/2017). The FCT distinction attributed to J. M. O. under the Investigator FCT program (number IF/01285/2015) is also greatly acknowledge

    Systemic treatment with pulsed electromagnetic fields do not affect bone microarchitecture in osteoporotic rats

    Get PDF
    Purpose: Pulsed electromagnetic fields (PEMF) are currently used in the treatment of spinal fusions and non-unions. There are indications that PEMF might also be effective in the treatment of osteoporosis. In this study we examined whether whole-body PEMF treatment affects the bone microarchitecture in an osteoporotic rat model. Methods: Twenty-week-old female rats were ovariectomised (n020). Four different PEMF treatment protocols based on previous experimental studies and based on clinically used PEMF signals were examined (2 h/day, 5 days/week). A control group did not receive PEMF. At zero, three and six weeks cancellous and cortical bone architectural changes at the proximal tibia were evaluated using in vivo microCT scanning. Results: PEMF treatment did not induce any changes in cancellous or cortical bone compared to untreated controls. Conclusions: Although previous studies have shown strong effects of PEMF in osteoporosis we were unable to demonstrate this in any of the treatment protocols. Using in vivo microCT scanning we were able to identify small bone changes in time. Subtle differences in the experimental setup might explain the differences in study outcomes in the literature. Since PEMF treatment is safe, future experimental studies on the effect of PEMF on bone can better be performed directly on humans, eliminating the potential translation issues between animals and humans. In this study we found no support for the use of PEMF in the treatment of osteoporosis

    Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study

    Get PDF
    Background: Although pulsed electromagnetic field (PEMF) stimulation may be clinically beneficial during fracture healing and for a wide range of bone disorders, there is still debate on its working mechanism. Mesenchymal stem cells are likely mediators facilitating the observed clinical effects of PEMF. Here, we performed in vitro experiments to investigate the effect of PEMF stimulation on human bone marrow-derived stromal cell (BMSC) metabolism and, specifically, whether PEMF can stimulate their osteogenic differentiation. Methods: BMSCs derived from four different donors were cultured in osteogenic medium, with the PEMF treated group being continuously exposed to a 15 Hz, 1 Gauss EM field, consisting of 5-millisecond bursts with 5-microsecond pulses. On culture day 1, 5, 9, and 14, cells were collected for biochemical analysis (DNA amount, alkaline phosphatase activity, calcium deposition), expression of various osteoblast-relevant genes and activation of extracellular signal-regulated kinase (ERK) signaling. Differences between treated and control groups were analyzed using the Wilcoxon signed rank test, and considered significant when p < 0.05. Results: Biochemical analysis revealed significant, differentiation stage-dependent, PEMF-induced differences: PEMF increased mineralization at day 9 and 14, without altering alkaline phosphatase activity. Cell proliferation, as measured by DNA amounts, was not affected by PEMF until day 14. Here, DNA content stagnated in PEMF treated group, resulting in less DNA compared to control. Quantitative RT-PCR revealed that during early culture, up to day 9, PEMF treatment increased mRNA levels of bone morphogenetic protein 2, transforming growth factor-beta 1, osteoprotegerin, matrix metalloproteinase-1 and-3, osteocalcin, and bone sialoprotein. In contrast, receptor activator of NF-B ligand expression was primarily stimulated on day 14. ERK1/2 phosphorylation was not affected by PEMF stimulation. Conclusions: PEMF exposure of differentiating human BMSCs enhanced mineralization and seemed to induce differentiation at the expense of proliferation. The osteogenic stimulus of PEMF was confirmed by the up-regulation of several osteogenic marker genes in the PEMF treated group, which preceded the deposition of mineral itself. These findings indicate that PEMF can directly stimulate osteoprogenitor cells towards osteogenic differentiation. This supports the theory that PEMF treatment may recruit these cells to facilitate an osteogenic response in vivo. © 2010 Jansen et al; licensee BioMed Central Ltd

    Effect of faradic products on direct current-stimulated calvarial organ culture calcium levels

    No full text
    Calcium release from mouse calvarial organ cultures was used to analyse the well-described biological effects of constant direct current (20 ?A) in combination with Faradic products generated at a titanium wire cathode. Constant 20-?A direct current stimulation alone, delivered by agar salt bridges, consistently lowered the media calcium levels. Direct exposure of calvariae to a titanium cathode and its faradic products resulted in further lowering of media calcium levels and also a significant increase in the media pH. Hydrogen peroxide is a faradic product of the titanium cathode, micromolar amounts being generated by our system over 24 hr. H2O2 is pro-resorptive whereas elevated pH stimulates osteoblast activity. We propose that where bone tissue is in direct contact with metal wire cathodes, the faradic products, hydrogen peroxide and hydroxyl ion, are significant factors which, in their own right, further contribute to accelerated remodelling and improved clinical outcome

    Intravitreal injectable hydrogels for sustained drug delivery in glaucoma treatment and therapy

    No full text
    Glaucoma is extensively treated with topical eye drops containing drugs. However, the retention time of the loaded drugs and the in vivo bioavailability of the drugs are highly influenced before reaching the targeted area sufficiently, due to physiological and anatomical barriers of the eye, such as rapid nasolacrimal drainage. Poor intraocular penetration and frequent administration may also cause ocular cytotoxicity. A novel approach to overcome these drawbacks is the use of injectable hydrogels administered intravitreously for sustained drug delivery to the target site. These injectable hydrogels are used as nanocarriers to intimately interact with specific diseased ocular tissues to increase the therapeutic efficacy and drug bioavailability of the anti-glaucomic drugs. The human eye is very delicate, and is sensitive to contact with any foreign body material. However, natural biopolymers are non-reactive, biocompatible, biodegradable, and lack immunogenic and inflammatory responses to the host whenever they are incorporated in drug delivery systems. These favorable biomaterial properties have made them widely applicable in biomedical applications, with minimal adversity. This review highlights the importance of using natural biopolymer-based intravitreal hydrogel drug delivery systems for glaucoma treatment over conventional methods

    Antibacterial properties of xanthine oxidase in human milk

    No full text
    Formula-fed babies contract gastroenteritis more than breast-fed babies, which is of concern to mothers who cannot breastfeed or, as with HIV-infected mothers, are discouraged from breastfeeding. The ability of endogenous breastmilk xanthine oxidase to generate the antimicrobial radical nitric oxide has been measured and its influence on the growth of Escherichia coli and Salmonella enteritides examined. Breastmilk, but not formula feed, generated nitric oxide. Xanthine oxidase activity substantially inhibited the growth of both bacteria. An important natural antibiotic system is missing in formula feeds; the addition of xanthine oxidase may improve formula for use when breastfeeding is not a safe option.<br/

    Xanthine oxidase mediates cytokine-induced, but not hormone-induced bone resorption

    No full text
    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) have been implicated as mediators of osteoclastic bone resorption. Xanthine oxidase (XO) a ubiquitous enzyme is widely known for its production of these ROS. We therefore evaluated the potential of XO as a source of ROS in cytokine-and hormone-induced bone resorption. XO activity in rat calvarial osteoblasts was found to be significantly elevated upon stimulation by the cytokines, TNFalpha and IL-1beta. These cytokines also caused a dose related increase in bone resorption of mouse calvariae, which was significantly inhibited by catalase (10 IU/ml). Allopurinol, the competitive inhibitor of XO, also caused a dose related (1-50 microM) inhibition of TNFalpha (20 ng/ml) and (0.01-10 microM) IL-1beta (50 IU/ml)-induced bone resorption, respectively. PTH- and 1,25-(OH)2 Vitamin D3-induced bone resorption could also be inhibited by catalase (100 IU/ml) but was unaffected by allopurinol, indicating that another mediator, other than XO, is required for hormone-induced bone resorption. These results demonstrate, that modulation of the redox balance in the bone microenvironment, which contains XO, can affect the bone resorbing process. Therefore, XO may play a pivotal role in cytokine-induced bone resorption and, if manipulated appropriately, could show a therapeutic benefit in inflammatory bone disorders such as RA.<br/

    New and Rare Carotenoids Isolated from Marine Bacteria and Their Antioxidant Activities

    No full text
    Marine bacteria have not been examined as extensively as land bacteria. We screened carotenoids from orange or red pigments-producing marine bacteria belonging to rare or novel species. The new acyclic carotenoids with a C30 aglycone, diapolycopenedioc acid xylosylesters A–C and methyl 5-glucosyl-5,6-dihydro-apo-4,4′-lycopenoate, were isolated from the novel Gram-negative bacterium Rubritalea squalenifaciens, which belongs to phylum Verrucomicrobia, as well as the low-GC Gram-positive bacterium Planococcus maritimus strain iso-3 belonging to the class Bacilli, phylum Firmicutes, respectively. The rare monocyclic C40 carotenoids, (3R)-saproxanthin and (3R,2′S)-myxol, were isolated from novel species of Gram-negative bacteria belonging to the family Flavobacteriaceae, phylum Bacteroidetes. In this review, we report the structures and antioxidant activities of these carotenoids, and consider relationships between bacterial phyla and carotenoid structures
    corecore