131 research outputs found

    A seesaw-lever force-balancing suspension design for space and terrestrial gravity-gradient sensing

    Get PDF
    We present the design, fabrication, and characterization of a seesaw-lever force-balancing suspension for a silicon gravity-gradient sensor, a gravity gradiometer, that is capable of operation over a range of gravity from 0 to 1 g. This allows for both air and space deployment after ground validation. An overall rationale for designing a microelectromechanical systems(MEMS) gravity gradiometer is developed, indicating that a gravity gradiometer based on a torsion-balance, rather than a differential-accelerometer, provides the best approach. The fundamental micromachined element, a seesaw-lever force-balancing suspension, is designed with a low fundamental frequency for in-plane rotation to response gravity gradient but with good rejection of all cross-axis modes. During operation under 1 g, a gravitational force is axially loaded on two straight-beams that perform as a stiff fulcrum for the mass-connection lever without affecting sensitive in-plane rotational sensing. The dynamics of this suspension are analysed by both closed-form and finite element analysis, with good agreement between the two. The suspension has been fabricated using through-wafer deep reactive-ion etching and the dynamics verified both in air and vacuum. The sensitivity of a gravity gradiometer built around this suspension will be dominated by thermal noise, contributing in this case a noise floor of around 10 E/Hz−−−√10 E/Hz (1 E = 10−9/s2) in vacuum. Compared with previous conventional gravity gradiometers, this suspension allows a gradiometer of performance within an order of magnitude but greatly reduced volume and weight. Compared with previous MEMS gravity gradiometers, our design has the advantage of functionality under Earth gravity

    Information dynamics: patterns of expectation and surprise in the perception of music

    Get PDF
    This is a postprint of an article submitted for consideration in Connection Science © 2009 [copyright Taylor & Francis]; Connection Science is available online at:http://www.tandfonline.com/openurl?genre=article&issn=0954-0091&volume=21&issue=2-3&spage=8

    Generation of folk song melodies using Bayes transforms

    Get PDF
    The paper introduces the `Bayes transform', a mathematical procedure for putting data into a hierarchical representation. Applicable to any type of data, the procedure yields interesting results when applied to sequences. In this case, the representation obtained implicitly models the repetition hierarchy of the source. There are then natural applications to music. Derivation of Bayes transforms can be the means of determining the repetition hierarchy of note sequences (melodies) in an empirical and domain-general way. The paper investigates application of this approach to Folk Song, examining the results that can be obtained by treating such transforms as generative models

    A dynamic network analysis of emergent grammar

    Get PDF
    For languages to survive as complex cultural systems, they need to be learnable. According to traditional approaches, learning is made possible by constraining the degrees of freedom in advance of experience and by the construction of complex structure during development. This article explores a third contributor to complexity: namely, the extent to which syntactic structure can be an emergent property of how simpler entities – words – interact with one another. The authors found that when naturalistic child directed speech was instantiated in a dynamic network, communities formed around words that were more densely connected with other words than they were with the rest of the network. This process is designed to mirror what we know about distributional patterns in natural language: namely, the network communities represented the syntactic hubs of semi-formulaic slot-and-frame patterns, characteristic of early speech. The network itself was blind to grammatical information and its organization reflected (a) the frequency of using a word and (b) the probabilities of transitioning from one word to another. The authors show that grammatical patterns in the input disassociate by community structure in the emergent network. These communities provide coherent hubs which could be a reliable source of syntactic information for the learner. These initial findings are presented here as proof-of-concept in the hope that other researchers will explore the possibilities and limitations of this approach on a larger scale and with more languages. The implications of a dynamic network approach are discussed for the learnability burden and the development of an adult-like grammar

    Brownian gyrator: An experimental realization

    Get PDF
    We present an experimental realization of a minimal heat engine in the form of a single Brownian particle, performing gyrating motion by systematic torque generation due to dissipation from two different heat baths in a simple optical tweezer set-up. © 2017 OSA

    Container terminal spatial planning : a 2041 paradigm for the Western Cape Province in South Africa

    Get PDF
    The original publication is available at http://www.jtscm.co.za/index.php/jtscm/article/view/59This paper investigates the suitable location for an intermodal inland container terminal (IICT) in the city of Cape Town. A container market segmentation approach is used to project growth for container volumes over a 30-year period for all origin and destination pairings on a geographical district level in an identified catchment area. The segmentation guides the decision on what type of facility is necessary to fulfil capacity requirements in the catchment area and will be used to determine the maximum space requirements for a future IICT. Alternative sites are ranked from most suitable to least suitable using multi-criteria analysis, and preferred locations are identified. Currently, South Africa’s freight movement is dominated by the road sector. Heavy road congestion is thus prevalent at the Cape Town Container Terminal (CTCT). The paper proposes three possible alternative sites for an IICT that will focus on a hub-and-spoke system of transporting freight

    On Hilberg's Law and Its Links with Guiraud's Law

    Full text link
    Hilberg (1990) supposed that finite-order excess entropy of a random human text is proportional to the square root of the text length. Assuming that Hilberg's hypothesis is true, we derive Guiraud's law, which states that the number of word types in a text is greater than proportional to the square root of the text length. Our derivation is based on some mathematical conjecture in coding theory and on several experiments suggesting that words can be defined approximately as the nonterminals of the shortest context-free grammar for the text. Such operational definition of words can be applied even to texts deprived of spaces, which do not allow for Mandelbrot's ``intermittent silence'' explanation of Zipf's and Guiraud's laws. In contrast to Mandelbrot's, our model assumes some probabilistic long-memory effects in human narration and might be capable of explaining Menzerath's law.Comment: To appear in Journal of Quantitative Linguistic

    Jet production in charged current deep inelastic e⁺p scatteringat HERA

    Get PDF
    The production rates and substructure of jets have been studied in charged current deep inelastic e⁺p scattering for Q² > 200 GeV² with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻¹. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}〉, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}〉 at y_{cut} = 10⁻² for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of Q² is found to be consistent with that measured in NC DIS

    B-cell-specific checkpoint molecules that regulate anti-tumour immunity.

    Get PDF
    The role of B cells in anti-tumour immunity is still debated and, accordingly, immunotherapies have focused on targeting T and natural killer cells to inhibit tumour growth1,2. Here, using high-throughput flow cytometry as well as bulk and single-cell RNA-sequencing and B-cell-receptor-sequencing analysis of B cells temporally during B16F10 melanoma growth, we identified a subset of B cells that expands specifically in the draining lymph node over time in tumour-bearing mice. The expanding B cell subset expresses the cell surface molecule T cell immunoglobulin and mucin domain 1 (TIM-1, encoded by Havcr1) and a unique transcriptional signature, including multiple co-inhibitory molecules such as PD-1, TIM-3, TIGIT and LAG-3. Although conditional deletion of these co-inhibitory molecules on B cells had little or no effect on tumour burden, selective deletion of Havcr1 in B cells both substantially inhibited tumour growth and enhanced effector T cell responses. Loss of TIM-1 enhanced the type 1 interferon response in B cells, which augmented B cell activation and increased antigen presentation and co-stimulation, resulting in increased expansion of tumour-specific effector T cells. Our results demonstrate that manipulation of TIM-1-expressing B cells enables engagement of the second arm of adaptive immunity to promote anti-tumour immunity and inhibit tumour growth
    corecore