7 research outputs found

    Presolar grain dynamics: Creating nucleosynthetic variations through a combination of drag and viscous evolution

    Full text link
    Meteoritic studies of Solar system objects show evidence of nucleosynthetic heterogeneities that are inherited from small presolar grains (⁠<10Όm⁠) formed in stellar environments external to our own. The initial distribution and subsequent evolution of these grains are currently unconstrained. Using 3D, gas-dust simulations, we find that isotopic variations on the order of those observed in the Solar system can be generated and maintained by drag and viscosity. Small grains are dragged radially outwards without size/density sorting by viscous expansion and backreaction, enriching the outer disc with presolar grains. Meanwhile large aggregates composed primarily of silicates drift radially inwards due to drag, further enriching the relative portion of presolar grains in the outer disc and diluting the inner disc. The late accumulation of enriched aggregates outside Jupiter could explain some of the isotopic variations observed in Solar system bodies, such as the enrichment of supernovae derived material in carbonaceous chondrites. We also see evidence for isotopic variations in the inner disc that may hold implications for enstatite and ordinary chondrites that formed closer to the Sun. Initial heterogeneities in the presolar grain distribution that are not continuously reinforced are dispersed by diffusion, radial surface flows, and/or planetary interactions over the entire lifetime of the disc. For younger, more massive discs we expect turbulent diffusion to be even more homogenizing, suggesting that dust evolution played a more central role in forming the isotopic anomalies in the Solar system than originally thought

    One of the earliest refractory inclusions and its implications for solar system history

    Get PDF
    A ∌175 ”m refractory inclusion, A-COR-01 from one of the least altered carbonaceous chondrites, ALHA 77307 (CO3.0), has been found to bear unique characteristics that indicate that it is one of the first solids to have formed at the very birth of the solar system while isotopic reservoirs were still evolving rapidly. Its core is composed mainly of hibonite and corundum, the two phases predicted to condense first from a gas of solar composition, and like many common types of Calcium-, Aluminium-rich Inclusions (CAIs) is surrounded by a rim of diopside. Core minerals in A-COR-01 are very 16O-rich (Δ17OCore = -32.5 ± 3.3 (2SD) ‰) while those in the rim display an O isotopic composition (Δ17ORim = -24.8 ± 0.5 (2SD) ‰) indistinguishable from that found in the vast majority of the least altered CAIs. These observations indicate that this CAI formed in a very 16O-rich reservoir and either recorded the subsequent evolution of this reservoir or the transit to another reservoir. The origin of A-COR-01in a primitive reservoir is consistent with the very low content of excess of radiogenic 26Mg in its core minerals corresponding to the inferred initial 26Al/27Al ratio ((26Al/27Al)0 = (1.67 ± 0.31) × 10-7), supporting a very early formation before injection and/or homogenisation of 26Al in the protoplanetary disk. Possible reservoir evolution and short-lived radionuclide (SLRs) injection scenarios are discussed and it is suggested that the observed isotope composition resulted from mixing of a previously un-observed early reservoir with the rest of the disk

    An oxygen isotope study of Wark–Lovering rims on type A CAIs in primitive carbonaceous chondrites

    Get PDF
    Calcium–aluminium-rich Inclusions(CAIs) and the thin Wark–Lovering (WL) rims of minerals surrounding them offer a record of the nature of changing conditions during the earliest stages of Solar System formation. Considerable heterogeneity in the gas composition in the immediate vicinity of the proto-Sun had previously been inferred from oxygen isotopic variations in the WL rim of a CAI from Allende (Simon et al., 2011). However, high precision and high spatial resolution oxygen isotope measurements presented in this study show that WL rim and pristine core minerals of individual CAIs from meteorites that had experienced only low degrees of alteration or low grade metamorphism (one from LĂ©oville (reduced CV3), two in QUE 99177 (CR3.0) and two in ALHA 77307 (CO3.0)) are uniformly 16O-rich. This indicates that the previously observed variations are the result of secondary processes, most likely on the asteroid parent body, and that there were no temporal or spatial variations in oxygen isotopic composition during CAI and WL rim formation. Such homogeneity across three groups of carbonaceous chondrites lends further support for a common origin for the CAIs in all chondrites. 16O-poor oxygen reservoirs such as those associated with chondrule formation, were probably generated by UV photo-dissociation involving self-shielding mechanisms and must have occurred elsewhere in outer regions of the solar accretion disk

    Can Chondrules Be Produced by the Interaction of Jupiter with the Protosolar Disk?

    Full text link
    Chondrules are crystallized droplets of silicate melt formed by rapid heating to high temperatures (>1800 K) of solid precursors followed by hours or days of cooling. The time interval of chondrule formation is consistent with the formation timescale of Jupiter in the core-accretion model (1–4 Myr). Here we investigate if the shocks generated by a massive planet could generate flash heating episodes necessary to form chondrules using high-resolution 2D simulations with the multifluid code RoSSBi. We use different radiative cooling prescriptions, planet masses, orbits, and disk models. Temperatures reached during flash heating can be deduced from chondrule observations and are achieved in a Minimum Mass Solar Nebula (MMSN) for a massive protoplanet (>0.75 M ♃) but only in cases in which radiative cooling is low enough to lead to nearly adiabatic conditions. More realistic thermodynamics undershoot the temperatures required in shocks for chondrule formation. However, these temperatures are reached when considering more massive disks (e.g., five MMSN), but these conditions lead to fast planet migration and too low cooling rates compared to those deduced from chondrule textures. Thus, it seems unlikely that shocks from Jupiter can form chondrules in most cases. Independent of the nebular mass, the simulations demonstrate that a massive planet that forms a gap triggers vortices, which act as dust traps for chondrule precursors. These vortices also provide a high-pressure environment consistent with cosmochemical evidence from chondrules. They only lack the flash heating source for a potential chondrule formation environment

    TEMPus VoLA: The timed Epstein multi-pressure vessel at low accelerations

    Full text link
    The field of planetary system formation relies extensively on our understanding of the aerodynamic interaction between gas and dust in protoplanetary disks. Of particular importance are the mechanisms triggering fluid instabilities and clumping of dust particles into aggregates, and their subsequent inclusion into planetesimals. We introduce the timed Epstein multi-pressure vessel at low accelerations, which is an experimental apparatus for the study of particle dynamics and rarefied gas under micro-gravity conditions. This facility contains three experiments dedicated to studying aerodynamic processes: (i) the development of pressure gradients due to collective particle–gas interaction, (ii) the drag coefficients of dust aggregates with variable particle–gas velocity, and (iii) the effect of dust on the profile of a shear flow and resultant onset of turbulence. The approach is innovative with respect to previous experiments because we access an untouched parameter space in terms of dust particle packing fraction, and Knudsen, Stokes, and Reynolds numbers. The mechanisms investigated are also relevant for our understanding of the emission of dust from active surfaces, such as cometary nuclei, and new experimental data will help interpreting previous datasets (Rosetta) and prepare future spacecraft observations (Comet Interceptor). We report on the performance of the experiments, which has been tested over the course of multiple flight campaigns. The project is now ready to benefit from additional flight campaigns, to cover a wide parameter space. The outcome will be a comprehensive framework to test models and numerical recipes for studying collective dust particle aerodynamics under space-like conditions
    corecore