343 research outputs found

    Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway

    Get PDF
    IMPORTANCE OF THE FIELD: Oxidative stress has been implicated in the pathogenesis of pulmonary emphysema. Nuclear factor erythroid-2-related factor 2 (Nrf2) a major antioxidant transcription factor could play a protective role in pulmonary emphysema. AREAS COVERED IN THIS REVIEW: Nrf2 is ubiquitously expressed throughout the lung, but is predominantly found in epithelium and alveolar macrophages. Evidence suggests that Nrf2 and several Nrf2 downstream genes have an essential protective role in the lung against oxidative stress from environmental pollutants and toxicants such as cigarette smoke, a major causative factor for the development and progression of pulmonary emphysema. Application of Nrf2-deficient mice identified an extensive range of protective roles for Nrf2 against the pathogenesis of pulmonary emphysema. Therefore, Nrf2 promises to be an attractive therapeutic target for intervention and prevention strategies. WHAT THE READER WILL GAIN: In this review, we discuss recent findings on the association of oxidative stress with pulmonary emphysema. We also address the mechanisms of Nrf2 lung protection against oxidative stress based on emerging evidence from experimental oxidative disease models and human studie. TAKE HOME MESSAGE: The current literature suggests that among oxidative stress targets, Nrf2 is a valuable therapeutic target in pulmonary emphysema

    Hard and soft news: A review of concepts, operationalizations and key findings

    Get PDF
    Over 30 years, a large body of research on what is often called ‘hard’ and ‘soft news’ has accumulated in communication studies. However, there is no consensus about what hard and soft news exactly is, or how it should be defined or measured. Moreover, the concept has not been clearly differentiated from or systematically related to concepts addressing very similar phenomena – tabloidization and ‘infotainment’. Consequently, the results of various studies are hard to compare and different scientific discourses on related issues remain unconnected. Against this backdrop, this article offers a conceptual analysis of the concept based on studies in English and other languages. We identify key dimensions of the concept and make suggestions for a standardized definition and multi-dimensional measurement of harder and softer news. In doing so, we propose to distinguish thematic, focus and style features as basic dimensions that – in their combination – make up harder and softer types of news

    NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease.

    Get PDF
    Several convergent destructive mechanisms such as oxidative stress, alveolar cell apoptosis, extracellular matrix proteolysis and chronic inflammation contribute to chronic obstructive pulmonary disease (COPD) development. Evidence suggests that oxidative stress contributes to the pathophysiology of COPD, particularly during exacerbations. Nuclear factor erythroid-2-related factor 2 (NRF2), a transcription factor expressed predominantly in epithelium and alveolar macrophages, has an essential protective role in the lungs through the activation of antioxidant response element-regulated antioxidant and cytoprotective genes. Animal models and human studies have identified NRF2 and several NRF2 target genes as a protective system against inflammation and oxidative stress from cigarette smoke, a major causative factor in COPD development. Hence, NRF2 targeting might provide clinical benefit by reducing both oxidative stress and inflammation in COPD

    Prolonged cigarette smoke exposure decreases heme oxygenase-1 and alters Nrf2 and Bach1 expression in human macrophages: roles of the MAP kinases ERK(1/2) and JNK

    Get PDF
    Tobacco may be involved in the decreased macrophage heme oxygenase-1 (HO-1) expression described in smoking-induced severe emphysema, via the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)-BTB and CNC homology 1, basic leucine zipper transcription factor 1 (Bach1) pathway. We assessed in vitro effects of cigarette smoke condensate (CS) in the human monocyte/macrophage cell line (THP-1). CS exposure led to increased HO-1 and nuclear Nrf2 expression (6 h) followed by decreased HO-1 expression concomitantly with nuclear Nrf2/Bach1 ratio decrease (72h). CS-induced mitogen-activated protein kinase (MAPK) phosphorylation. Extracellular-signal-regulated kinase(1/2) (ERK(1/2)) and c-Jun NH2-terminal kinase (JNK) inhibition completely abrogated CS effects on HO-1 expression and nuclear Nrf2/Bach1 translocation. These results suggest that ERK(1/2) and JNK are involved in CS-induced biphasic HO-1 expression by a specific regulation of Nrf2/Keap1-Bach1

    Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema

    Get PDF
    BACKGROUND: Oxidative stress, resulting from the increased oxidative burden and decreased level of antioxidant proteins, plays a role in the pathophysiology of smoking-related pulmonary emphysema. Expression of several antioxidant proteins, such as heme oxygenase-1 (HO-1), glutathione peroxidase 2 (GPX2) and NAD(P)H:quinone oxidoreductase 1 (NQO1), results from an equilibrium created by positive or negative regulation by the transcription factors Nrf2, Keap1 and Bach1, respectively. However, whether the expression of these transcription factors is altered in emphysema and could account for decreased expression of antioxidant proteins is not known. A study was undertaken to investigate the expression and subcellular localisation of Nrf2, Keap1 and Bach1 as potential regulators of HO-1, GPX2 and NQO1 in alveolar macrophages, a key cell in oxidative stress, in lung surgical specimens from non-smokers without emphysema and smokers with and without emphysema. METHODS AND RESULTS: Western blot, immunohistochemical and laser scanning confocal analysis revealed that the Nrf2 protein level decreased significantly in whole lung tissue and alveolar macrophages (cytosol and nucleus) in patients with emphysema compared with those without emphysema. Conversely, Bach1 and Keap1 levels were increased in patients with emphysema. These modifications were associated with a parallel decrease in the expression of HO-1, GPX2 and NQO1 at the cellular level, which was inversely correlated with airway obstruction and distension indexes, and increased macrophage expression of the lipid peroxidation product 4-hydroxy-2-nonenal. Silencing RNA experiments in vitro in THP-1 cells were performed to confirm the cause-effect relation between the loss of Nrf2 and the decrease in HO-1, NQO1 and GPX2 expression. Nrf2/Keap1-Bach1 equilibrium was altered in alveolar macrophages in pulmonary emphysema, which points to a decreased stress response phenotype. CONCLUSIONS: This finding opens a new view of the pathophysiology of emphysema and could provide the basis for new therapeutic approaches based on preservation and/or restoration of such equilibrium

    Convergence calls: multimedia storytelling at British news websites

    Get PDF
    This article uses qualitative interviews with senior editors and managers from a selection of the UK's national online news providers to describe and analyse their current experimentation with multimedia and video storytelling. The results show that, in a period of declining newspaper readership and TV news viewing, editors are keen to embrace new technologies, which are seen as being part of the future of news. At the same time, text is still reported to be the cornerstone for news websites, leading to changes in the grammar and function of news video when used online. The economic rationale for convergence is examined and the article investigates the partnerships sites have entered into in order to be able to serve their audience with video content. In-house video is complementing syndicated content, and the authors examine the resulting developments in newsroom training and recruitment practices. The article provides journalism and interactive media scholars with case studies on the changes taking place in newsrooms as a result of the shift towards multimedia, multiplatform news consumption

    Bilirubin decreases NOS2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shock in rats.

    Get PDF
    We investigated a possible beneficial role for bilirubin, one of the products of heme degradation by the cytoprotective enzyme heme oxygenase-1 in counteracting Escherichia coli endotoxin-mediated toxicity. Homozygous jaundice Gunn rats, which display high plasma bilirubin levels due to deficiency of glucuronyl transferase activity, and Sprague-Dawley rats subjected to sustained exogenous bilirubin administration were more resistant to endotoxin (LPS)-induced hypotension and death compared with nonhyperbilirubinemic rats. LPS-stimulated production of nitric oxide (NO) was significantly decreased in hyperbilirubinemic rats compared with normal animals; this effect was associated with reduction of inducible NO synthase (NOS2) expression in renal, myocardial, and aortic tissues. Furthermore, NOS2 protein expression and activity were reduced in murine macrophages stimulated with LPS and preincubated with bilirubin at concentrations similar to that found in the serum of hyperbilirubinemic animals. This effect was secondary to inhibition of NAD(P)H oxidase since 1) inhibition of NAD(P)H oxidase attenuated NOS2 induction by LPS, 2) bilirubin decreased NAD(P)H oxidase activity in vivo and in vitro, and 3) down-regulation of NOS2 by bilirubin was reversed by addition of NAD(P)H. These findings indicate that bilirubin can act as an effective agent to reduce mortality and counteract hypotension elicited by endotoxin through mechanisms involving a decreased NOS2 induction secondary to inhibition of NAD(P)H oxidase

    Phase Transition of a Non-Linear Opinion Dynamics with Noisy Interactions

    Get PDF
    International audienceIn several real \emph{Multi-Agent Systems} (MAS), it has been observed that only weaker forms of\emph{metastable consensus} are achieved, in which a large majority of agents agree on some opinion while other opinions continue to be supported by a (small) minority of agents. In this work, we take a step towards the investigation of metastable consensus for complex (non-linear) \emph{opinion dynamics} by considering the famous \undecided dynamics in the binary setting, which is known to reach consensus exponentially faster than the \voter dynamics. We propose a simple form of uniform noise in which each message can change to another one with probability pp and we prove that the persistence of a \emph{metastable consensus} undergoes a \emph{phase transition} for p=16p=\frac 16. In detail, below this threshold, we prove the system reaches with high probability a metastable regime where a large majority of agents keeps supporting the same opinion for polynomial time. Moreover, this opinion turns out to be the initial majority opinion, whenever the initial bias is slightly larger than its standard deviation.On the contrary, above the threshold, we show that the information about the initial majority opinion is ``lost'' within logarithmic time even when the initial bias is maximum.Interestingly, using a simple coupling argument, we show the equivalence between our noisy model above and the model where a subset of agents behave in a \emph{stubborn} way

    Biological effects of particles from the paris subway system

    Get PDF
    Particulate matter (PM) from atmospheric pollution can easily deposit in the lungs and induce recruitment of inflammatory cells, a source of inflammatory cytokines, oxidants, and matrix metalloproteases (MMPs), which are important players in lung structural homeostasis. In many large cities, the subway system is a potent source of PM emission, but little is known about the biological effects of PM from this source. We performed a comprehensive study to evaluate the biological effects of PM sampled at two sites (RER and Metro) in the Paris subway system. Murine macrophages (RAW 264.7) and C57Bl/6 mice, respectively, were exposed to 0.01-10 microg/cm2 and 5-100 microg/mouse subway PM or reference materials [carbon black (CB), titanium dioxide (TiO2), or diesel exhaust particles (DEPs)]. We analyzed cell viability, production of cellular and lung proinflammatory cytokines [tumor necrosis factor alpha (TNFalpha), macrophage inflammatory protein (MIP-2), KC (the murin analog of interleukin-8), and granulocyte macrophage-colony stimulating factor (GM-CSF)], and mRNA or protein expression of MMP-2, -9, and -12 and heme oxygenase-1 (HO-1). Deferoxamine and polymixin B were used to evaluate the roles of iron and endotoxin, respectively. Noncytotoxic concentrations of subway PM (but not CB, TiO2, or DEPs) induced a time- and dose-dependent increase in TNFalpha and MIP-2 production by RAW 264.7 cells, in a manner involving, at least in part, PM iron content (34% inhibition of TNF production 8 h after stimulation of RAW 264.7 cells with 10 microg/cm2 RER particles pretreated with deferoxamine). Similar increased cytokine production was transiently observed in vivo in mice and was accompanied by an increased neutrophil cellularity of bronchoalveolar lavage (84.83+/-0.98% of polymorphonuclear neutrophils for RER-treated mice after 24 h vs 7.33+/-0.99% for vehicle-treated animals). Subway PM induced an increased expression of MMP-12 and HO-1 both in vitro and in vivo. PM from the Paris subway system has transient biological effects. Further studies are needed to better understand the pathophysiological implications of these findings

    Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment

    Get PDF
    BACKGROUND: Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. METHODS: OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. RESULTS: Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. CONCLUSIONS: Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several antigens when developing vaccine strategies for cancer
    • …
    corecore