80 research outputs found

    Uncertainty-principle noise in vacuum-tunneling transducers

    Full text link
    The fundamental sources of noise in a vacuum-tunneling probe used as an electromechanical transducer to monitor the location of a test mass are examined using a first-quantization formalism. We show that a tunneling transducer enforces the Heisenberg uncertainty principle for the position and momentum of a test mass monitored by the transducer through the presence of two sources of noise: the shot noise of the tunneling current and the momentum fluctuations transferred by the tunneling electrons to the test mass. We analyze a number of cases including symmetric and asymmetric rectangular potential barriers and a barrier in which there is a constant electric field. Practical configurations for reaching the quantum limit in measurements of the position of macroscopic bodies with such a class of transducers are studied

    Quantum limit in resonant vacuum tunneling transducers

    Full text link
    We propose an electromechanical transducer based on a resonant-tunneling configuration that, with respect to the standard tunneling transducers, allows larger tunneling currents while using the same bias voltage. The increased current leads to an increase of the shot noise and an increase of the momentum noise which determine the quantum limit in the system under monitoring. Experiments with micromachined masses at 4.2 K could show dominance of the momentum noise over the Brownian noise, allowing observation of the quantum-mechanical noise at the mesoscopic scale

    High resolution measurements of the switching current in a Josephson tunnel junction: Thermal activation and macroscopic quantum tunneling

    Full text link
    We have developed a scheme for a high resolution measurement of the switching current distribution of a current biased Josephson tunnel junction using a timing technique. The measurement setup is implemented such that the digital control and read-out electronics are optically decoupled from the analog bias electronics attached to the sample. We have successfully used this technique to measure the thermal activation and the macroscopic quantum tunneling of the phase in a small Josephson tunnel junction with a high experimental resolution. This technique may be employed to characterize current-biased Josephson tunnel junctions for applications in quantum information processing.Comment: 10 pages, 8 figures, 1 tabl

    Stochastic Collapse and Decoherence of a Non-Dissipative Forced Harmonic Oscillator

    Full text link
    Careful monitoring of harmonically bound (or as a limiting case, free) masses is the basis of current and future gravitational wave detectors, and of nanomechanical devices designed to access the quantum regime. We analyze the effects of stochastic localization models for state vector reduction, and of related models for environmental decoherence, on such systems, focusing our analysis on the non-dissipative forced harmonic oscillator, and its free mass limit. We derive an explicit formula for the time evolution of the expectation of a general operator in the presence of stochastic reduction or environmentally induced decoherence, for both the non-dissipative harmonic oscillator and the free mass. In the case of the oscillator, we also give a formula for the time evolution of the matrix element of the stochastic expectation density matrix between general coherent states. We show that the stochastic expectation of the variance of a Hermitian operator in any unraveling of the stochastic process is bounded by the variance computed from the stochastic expectation of the density matrix, and we develop a formal perturbation theory for calculating expectation values of operators within any unraveling. Applying our results to current gravitational wave interferometer detectors and nanomechanical systems, we conclude that the deviations from quantum mechanics predicted by the continuous spontaneous localization (CSL) model of state vector reduction are at least five orders of magnitude below the relevant standard quantum limits for these experiments. The proposed LISA gravitational wave detector will be two orders of magnitude away from the capability of observing an effect.Comment: TeX; 34 page

    Single and double qubit gates by manipulating degeneracy

    Full text link
    A novel mechanism is proposed for single and double qubit state manipulations in quantum computation with four-fold degenerate energy levels. The principle is based on starting with a four fold degeneracy, lifting it stepwise adiabatically by a set of control parameters and performing the quantum gate operations on non-degenerate states. A particular realization of the proposed mechanism is suggested by using inductively coupled rf-squid loops in the macroscopic quantum tunnelling regime where the energy eigen levels are directly connected with the measurable flux states. The one qubit and two qubit controlled operations are demonstrated explicitly. The appearance of the flux states also allows precise read-in and read-out operations by the measurement of flux.Comment: 6 pages + 5 figures (separately included

    Quiet SDS Josephson Junctions for Quantum Computing

    Full text link
    Unconventional superconductors exhibit an order parameter symmetry lower than the symmetry of the underlying crystal lattice. Recent phase sensitive experiments on YBCO single crystals have established the d-wave nature of the cuprate materials, thus identifying unambiguously the first unconventional superconductor. The sign change in the order parameter can be exploited to construct a new type of s-wave - d-wave - s-wave Josephson junction exhibiting a degenerate ground state and a double-periodic current-phase characteristic. Here we discuss how to make use of these special junction characteristics in the construction of a quantum computer. Combining such junctions together with a usual s-wave link into a SQUID loop we obtain what we call a `quiet' qubit --- a solid state implementation of a quantum bit which remains optimally isolated from its environment.Comment: 4 pages, 2 ps-figure

    Entanglement Dynamics in Two-Qubit Open System Interacting with a Squeezed Thermal Bath via Quantum Nondemolition interaction

    Full text link
    We analyze the dynamics of entanglement in a two-qubit system interacting with an initially squeezed thermal environment via a quantum nondemolition system-reservoir interaction, with the system and reservoir assumed to be initially separable. We compare and contrast the decoherence of the two-qubit system in the case where the qubits are mutually close-by (`collective regime') or distant (`localized regime') with respect to the spatial variation of the environment. Sudden death of entanglement (as quantified by concurrence) is shown to occur in the localized case rather than in the collective case, where entanglement tends to `ring down'. A consequence of the QND character of the interaction is that the time-evolved fidelity of a Bell state never falls below 1/21/\sqrt{2}, a fact that is useful for quantum communication applications like a quantum repeater. Using a novel quantification of mixed state entanglement, we show that there are noise regimes where even though entanglement vanishes, the state is still available for applications like NMR quantum computation, because of the presence of a pseudo-pure component.Comment: 17 pages, 9 figures, REVTeX

    Mirror quiescence and high-sensitivity position measurements with feedback

    Get PDF
    We present a detailed study of how phase-sensitive feedback schemes can be used to improve the performance of optomechanical devices. Considering the case of a cavity mode coupled to an oscillating mirror by the radiation pressure, we show how feedback can be used to reduce the position noise spectrum of the mirror, cool it to its quantum ground state, or achieve position squeezing. Then, we show that even though feedback is not able to improve the sensitivity of stationary position spectral measurements, it is possible to design a nonstationary strategy able to increase this sensitivity.Comment: 25 pages, 11 figure

    Two-electron quantum dots as scalable qubits

    Full text link
    We show that two electrons confined in a square semiconductor quantum dot have two isolated low-lying energy eigenstates, which have the potential to form the basis of scalable computing elements (qubits). Initialisation, one-qubit and two-qubit universal gates, and readout are performed using electrostatic gates and magnetic fields. Two-qubit transformations are performed via the Coulomb interaction between electrons on adjacent dots. Choice of initial states and subsequent asymmetric tuning of the tunnelling energy parameters on adjacent dots control the effect of this interaction.Comment: Revised version, accepted by PR

    Arbitrary rotation and entanglement of flux SQUID qubits

    Full text link
    We propose a new approach for the arbitrary rotation of a three-level SQUID qubit and describe a new strategy for the creation of coherence transfer and entangled states between two three-level SQUID qubits. The former is succeeded by exploring the coupled-uncoupled states of the system when irradiated with two microwave pulses, and the latter is succeeded by placing the SQUID qubits into a microwave cavity and used adiabatic passage methods for their manipulation.Comment: Accepted for publication in Phys. Rev.
    corecore