751 research outputs found

    Genomic organization and chromosomal localization of the murine 2 P domain potassium channel gene Kcnk8: conservation of gene structure in 2 P domain potassium channels.

    Get PDF
    A 2 P domain potassium channel expressed in eye, lung, and stomach, Kcnk8, has recently been identified. To initiate further biochemical and genetic studies of this channel, we assembled the murine Kcnk8 cDNA sequence, characterized the genomic structure of the Kcnk8 gene, determined its chromosomal localization, and analyzed its activity in a Xenopus laevis oocyte expression system. The composite cDNA has an open reading frame of 1029 bp and encodes a protein of 343 amino acids with a predicted molecular mass of 36 kDa. Structure analyses predict 2 P domains and four potential transmembrane helices with a potential single EF-hand motif and four potential SH3-binding motifs in the COOH-terminus. Cloning of the Kcnk8 chromosomal gene revealed that it is composed of three exons distributed over 4 kb of genomic DNA. Genome database searching revealed that one of the intron/exon boundaries identified in Kcnk8 is present in other mammalian 2 P domain potassium channels genes and many C. elegans 2P domain potassium channel genes, revealing evolutionary conservation of gene structure. Using fluorescence in situ hybridization, the murine Kcnk8 gene was mapped to chromosome 19, 2B, the locus of the murine dancer phenotype, and syntenic to 11q11-11q13, the location of the human homologue. No significant currents were generated in a Xenopus laevis oocyte expression system using the composite Kcnk8 cDNA sequence, suggesting, like many potassium channels, additional channel subunits, modulator substances, or cellular chaperones are required for channel function

    Segment-specific expression of 2P domain potassium channel genes in human nephron.

    Get PDF
    BackgroundThe 2P domain potassium (K2P) channels are a recently discovered ion channel superfamily. Structurally, K2P channels are distinguished by the presence of two pore forming loops within one channel subunit. Functionally, they are characterized by their ability to pass potassium across the physiologic voltage range. Thus, K2P channels are also called open rectifier, background, or leak potassium channels. Patch clamp studies of renal tubules have described several open rectifier potassium channels that have as yet eluded molecular identification. We sought to determine the segment-specific expression of transcripts for the 14 known K2P channel genes in human nephron to identify potential correlates of native leak channels.MethodsHuman kidney samples were obtained from surgical cases and specific nephron segments were dissected. RNA was extracted and used as template for the generation of cDNA libraries. Real-time polymerase chain reaction (PCR) (TaqMan) was used to analyze gene expression.ResultsWe found significant (P < 0.05) expression of K2P10 in glomerulus, K2P5 in proximal tubule and K2P1 in cortical thick ascending limb of Henle's loop (cTAL) and in distal nephron segments. In addition, we repeatedly detected message for several other K2P channels with less abundance, including K2P3 and K2P6 in glomerulus, K2P10 in proximal tubule, K2P5 in thick ascending limb of Henle's loop, and K2P3, K2P5, and K2P13 in distal nephron segments.ConclusionK2P channels are expressed in specific segments of human kidney. These results provide a step toward assigning K2P channels to previously described native renal leaks

    Tubulopathy meets Sherlock Holmes: biochemical fingerprinting of disorders of altered kidney tubular salt handling

    Get PDF
    Evolution moves in mysterious ways. Excretion of waste products by glomerular filtration made perfect sense when life evolved in the ocean. Yet, the associated loss of water and solutes became a problem when life moved onto land: a serious design change was needed and this occurred in the form of ever more powerful tubules that attached to the glomerulus. By reabsorbing typically more than 99% of the glomerular filtrate, the tubules not only minimise urinary losses, but, crucially, also maintain homeostasis: tubular reabsorption and secretion are adjusted so as to maintain an overall balance, in which urine volume and composition matches intake and environmental stressors. A whole orchestra of highly specialised tubular transport proteins is involved in this process and dysfunction of one or more of these results in the so-called kidney tubulopathies, characterised by specific patterns of clinical and biochemical abnormalities. In turn, recognition of these patterns helps establish a specific diagnosis and pinpoints the defective transport pathway. In this review, we will discuss these clinical and biochemical "fingerprints" of tubular disorders of salt-handling and how sodium handling affects volume homeostasis but also handling of other solutes

    Potential and pitfalls in the genetic diagnosis of kidney diseases

    Get PDF
    Next-generation sequencing has dramatically decreased the cost of gene sequencing, facilitating the simultaneous analysis of multiple genes at the same time; obtaining a genetic result for an individual patient has become much easier. The article by Ars and Torra in this issue of the Clinical Kidney Journal provides examples of the ever-increasing ability to understand a given patient's disease on the molecular level, so that in some cases not only the causative variants in a disease gene are identified, but also potential modifiers in other genes. Yet, with increased sequencing, a large number of variants are discovered that are difficult to interpret. These so-called 'variants of uncertain significance' raise important questions: when and how can pathogenicity be clearly attributed? This is of critical importance, as there are potentially serious consequences attached: decisions about various forms of treatment and even about life and death, such as termination of pregnancy, may hinge on the answer to these questions. Geneticists, thus, need to use the utmost care in the interpretation of identified variants and clinicians must be aware of this problem. We here discuss the potential of genetics to facilitate personalized treatment, but also the pitfalls and how to deal with them

    Genetic Testing and FOX News

    Get PDF
    Genetic testing is transforming kidney care, arguably with similar impact as the adoption of kidney biopsies in the 1950s. It is incumbent on nephrologists to teach the genetics of kidney disease and the accessibility of genetic testing. Proper usage of genetic testing can avoid “diagnostic odysseys” with multiple nonspecific investigations, some of them invasive like a kidney biopsy and repeated consultations with multiple different specialists [1]

    Non-accidental salt poisoning

    Get PDF

    The Parameterized Approximability of TSP with Deadlines

    Get PDF
    Modern algorithm theory includes numerous techniques to attack hard problems, such as approximation algorithms on the one hand and parameterized complexity on the other hand. However, it is still uncommon to use these two techniques simultaneously, which is unfortunate, as there are natural problems that cannot be solved using either technique alone, but rather well if we combine them. The problem to be studied here is not only natural, but also practical: Consider TSP, generalized as follows. We impose deadlines on some of the vertices, effectively constraining them to be visited prior to a given point of time. The resulting problem DlTSP (a special case of the well-known TSP with time windows) inherits its hardness from classical TSP, which is both well known from practice and renowned to be one of the hardest problems with respect to approximability: Within polynomial time, not even a polynomial approximation ratio (let alone a constant one) can be achieved (unless P = NP). We will show that DlTSP is even harder than classical TSP in the following sense. Classical TSP, despite its hardness, admits good approximation algorithms if restricted to metric (or near-metric) inputs. Not so DlTSP (and hence, neither TSP with time windows): We will prove that even for metric inputs, no constant approximation ratio can ever be achieved (unless P = NP). This is where parameterization becomes crucial: By combining methods from the field of approximation algorithms with ideas from the theory of parameterized complexity, we apply the concept of parameterized approximation. Thereby, we obtain a 2.5-approximation algorithm for DlTSP with a running time of k! · poly(|G|), where k denotes the number of deadlines. Furthermore, we prove that there is no fpt-algorithm with an approximation guarantee of 2-ε for any ε > 0, unless P = NP. Finally, we show that, unlike TSP, DlTSP becomes much harder when relaxing the triangle inequality. More precisely, for an arbitrary small violation of the triangle inequality, DlTSP does not admit an fpt-algorithm with approximation guarantee ((1-ε)/2)|V| for any ε > 0, unless P = N
    • …
    corecore