17 research outputs found

    5-Hydroxytryptamine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    oai:ojs.pkp.sfu.ca:article/31555-HT receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on 5-HT receptors [194] and subsequently revised [176]) are, with the exception of the ionotropic 5-HT3 class, GPCRs where the endogenous agonist is 5-hydroxytryptamine. The diversity of metabotropic 5-HT receptors is increased by alternative splicing that produces isoforms of the 5-HT2A (non-functional), 5-HT2C (non-functional), 5-HT4, 5-HT6 (non-functional) and 5-HT7 receptors. Unique amongst the GPCRs, RNA editing produces 5-HT2C receptor isoforms that differ in function, such as efficiency and specificity of coupling to Gq/11 and also pharmacology [40, 482]. Most 5-HT receptors (except 5-ht1e and 5-ht5b) play specific roles mediating functional responses in different tissues (reviewed by [463, 382])

    5-Hydroxytryptamine receptors in GtoPdb v.2023.1

    Get PDF
    5-HT receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on 5-HT receptors [198] and subsequently revised [180]) are, with the exception of the ionotropic 5-HT3 class, GPCRs where the endogenous agonist is 5-hydroxytryptamine. The diversity of metabotropic 5-HT receptors is increased by alternative splicing that produces isoforms of the 5-HT2A (non-functional), 5-HT2C (non-functional), 5-HT4, 5-HT6 (non-functional) and 5-HT7 receptors. Unique amongst the GPCRs, RNA editing produces 5-HT2C receptor isoforms that differ in function, such as efficiency and specificity of coupling to Gq/11 and also pharmacology [40, 491]. Most 5-HT receptors (except 5-ht1e and 5-ht5b) play specific roles mediating functional responses in different tissues (reviewed by [471, 387])

    Reflections

    No full text

    Blockade of serotonin 5-HT6 receptor constitutive activity alleviates cognitive deficits in a preclinical model of neurofibromatosis type 1

    No full text
    Neurofibromatosis type 1 (NF1) is a common inherited disorder caused by mutations of the NF1 gene that encodes the Ras-GTPase activating protein neurofibromin, leading to overactivation of Ras-dependent signaling pathways such as the mTOR pathway. It is often characterized by a broad range of cognitive symptoms that are currently untreated. The serotonin 5-HT(6) receptor is a potentially relevant target in view of its ability to associate with neurofibromin and to engage the mTOR pathway to compromise cognition in several cognitive impairment paradigms. Here, we show that constitutively active 5-HT(6) receptors contribute to increased mTOR activity in the brain of Nf1(+/−) mice, a preclinical model recapitulating some behavioral alterations of NF1. Correspondingly, peripheral administration of SB258585, a 5-HT(6) receptor inverse agonist, or rapamycin, abolished deficits in long-term social and associative memories in Nf1(+/−) mice, whereas administration of CPPQ, a neutral antagonist, did not produce cognitive improvement. These results show a key influence of mTOR activation by constitutively active 5-HT(6) receptors in NF1 cognitive symptoms. They provide a proof of concept that 5-HT(6) receptor inverse agonists already in clinical development as symptomatic treatments to reduce cognitive decline in dementia and psychoses, might be repurposed as therapies alleviating cognitive deficits in NF1 patients
    corecore