25 research outputs found

    Complete mitochondrial genome of the speckled dace \u3ci\u3eRhinichthys osculus\u3c/i\u3e, a widely distributed cyprinid minnow of western North America

    Get PDF
    The speckled dace Rhinichthys osculus (order Cypriniformes), also known as the carpita pinta, is a small cyprinid minnow native to western North America. Here, we report the sequencing of the full mitochondrial genome (mitogenome) of R. osculus from a male fish collected from the Amargosa River Canyon in eastern California, USA. The assembled mitogenome is 16 658 base pair (bp) nucleotides, and encodes 13 protein-coding genes, and includes both a 12S and a 16S rRNA, 22 tRNAs, and a 985 bp D-loop control region. Mitogenome synteny reflects that of other Ostariophysian fishes with the majority of genes and RNAs encoded on the heavy strand (H-strand) except nd6, tRNA-Gln, tRNA-Ala, tRNA-Asn, tRNA-Cys, tRNA-Tyr, tRNA-Ser, tRNA-Glu, and tRNA-Pro. The availability of this R. osculus mitochondrial genome – the first complete mitogenome within the lineage of Rhinichthys riffle daces – provides a foundation for resolving evolutionary relationships among morphologically differentiated populations of R. osculus

    Numerical optimization of integrating cavities for diffraction-limited millimeter-wave bolometer arrays

    Get PDF
    Far-infrared to millimeter-wave bolometers designed to make astronomical observations are typically encased in integrating cavities at the termination of feedhorns or Winston cones. This photometer combination maximizes absorption of radiation, enables the absorber area to be minimized, and controls the directivity of absorption, thereby reducing susceptibility to stray light. In the next decade, arrays of hundreds of silicon nitride micromesh bolometers with planar architectures will be used in ground-based, suborbital, and orbital platforms for astronomy. The optimization of integrating cavity designs is required for achieving the highest possible sensitivity for these arrays. We report numerical simulations of the electromagnetic fields in integrating cavities with an infinite plane-parallel geometry formed by a solid reflecting backshort and the back surface of a feedhorn array block. Performance of this architecture for the bolometer array camera (Bolocam) for cosmology at a frequency of 214 GHz is investigated. We explore the sensitivity of absorption efficiency to absorber impedance and backshort location and the magnitude of leakage from cavities. The simulations are compared with experimental data from a room-temperature scale model and with the performance of Bolocam at a temperature of 300 mK. The main results of the simulations for Bolocam-type cavities are that (1) monochromatic absorptions as high as 95% are achievable with <1% cross talk between neighboring cavities, (2) the optimum absorber impedances are 400 Ω/sq, but with a broad maximum from ~150 to ~700 Ω/sq, and (3) maximum absorption is achieved with absorber diameters ≥1.5λ. Good general agreement between the simulations and the experiments was found

    Bolocam: a millimeter-wave bolometric camera

    Get PDF
    We describe the design of Bolocam, a bolometric camera for millimeter-wave observations at the Caltech Submillimeter Observatory. Bolocam will have 144 diffraction-limited detectors operating at 300 mK, an 8 arcminute field of view, and a sky noise limited NEFD of approximately 35 mJy Hz^(-1/2) per pixel at λ = 1.4 mm. Observations will be possible at one of (lambda) equals 1.1., 1.4, or 2.1 mm per observing run. The detector array consists of sensitive NTD Ge thermistors bonded to silicon nitride micromesh absorbers patterned on a single wafer of silicon. This is a new technology in millimeter-wave detector array construction. To increase detector packing density, the feed horns will be spaced by 1.26 fλ (at λ = 1.4 mm), rather than the conventional 2fλ . DC stable read out electronics will enable on-the-fly mapping and drift scanning. We will use Bolocam to map Galactic dust emission, to search for protogalaxies, and to observe the Sunyaev- Zel'dovich effect toward galaxy clusters

    Current status of Bolocam: a large-format millimeter-wave bolometer camera

    Get PDF
    We describe the design and performance of Bolocam, a 144-element, bolometric, millimeter-wave camera. Bolocam is currently in its commissioning stage at the Caltech Submillimeter Observatory. We compare the instrument performance measured at the telescope with a detailed sensitivity model, discuss the factors limiting the current sensitivity, and describe our plans for future improvements intended to increase the mapping speed

    Current status of Bolocam: a large-format millimeter-wave bolometer camera

    Get PDF
    We describe the design and performance of Bolocam, a 144-element, bolometric, millimeter-wave camera. Bolocam is currently in its commissioning stage at the Caltech Submillimeter Observatory. We compare the instrument performance measured at the telescope with a detailed sensitivity model, discuss the factors limiting the current sensitivity, and describe our plans for future improvements intended to increase the mapping speed

    Association of Cardiometabolic Disease With Cancer in the Community

    Get PDF
    BACKGROUND: Obesity and cardiometabolic dysfunction have been associated with cancer risk and severity. Underlying mechanisms remain unclear. OBJECTIVES: The aim of this study was to examine associations of obesity and related cardiometabolic traits with incident cancer. METHODS: FHS (Framingham Heart Study) and PREVEND (Prevention of Renal and Vascular End-Stage Disease) study participants without prevalent cancer were studied, examining associations of obesity, body mass index (BMI), waist circumference, visceral adipose tissue (VAT) and subcutaneous adipose tissue depots, and C-reactive protein (CRP) with future cancer in Cox models. RESULTS: Among 20,667 participants (mean age 50 years, 53% women), 2,619 cancer events were observed over a median follow-up duration of 15 years. Obesity was associated with increased risk for future gastrointestinal (HR: 1.30; 95% CI: 1.05-1.60), gynecologic (HR: 1.62; 95% CI: 1.08-2.45), and breast (HR: 1.32; 95% CI: 1.05-1.66) cancer and lower risk for lung cancer (HR: 0.62; 95% CI: 0.44-0.87). Similarly, waist circumference was associated with increased risk for overall, gastrointestinal, and gynecologic but not lung cancer. VAT but not subcutaneous adipose tissue was associated with risk for overall cancer (HR: 1.22; 95% CI: 1.05-1.43), lung cancer (HR: 1.92; 95% CI: 1.01-3.66), and melanoma (HR: 1.56; 95% CI: 1.02-2.38) independent of BMI. Last, higher CRP levels were associated with higher risk for overall, colorectal, and lung cancer (P < 0.05 for all). CONCLUSIONS: Obesity and abdominal adiposity are associated with future risk for specific cancers (eg, gastrointestinal, gynecologic). Although obesity was associated with lower risk for lung cancer, greater VAT and CRP were associated with higher lung cancer risk after adjusting for BMI

    New routes to organometallic molecular junctions via a simple thermal processing protocol

    No full text
    Methods for forming single- and multiple-molecule junctions are key to the development of molecular electronics and the further study of allied electronic and electrical properties of molecules arising from through-molecule charge transport. The organometallic complex trans-Ru(C[triple bond, length as m-dash]C-3-C4H3S)(C[triple bond, length as m-dash]C-1,4-C6H4C[triple bond, length as m-dash]CAuPPh3)(dppe)2 forms well-ordered, densely packed self-assembled monolayers on gold and silver substrates, contacted through the sulfur atoms of the thiophenyl groups. Upon mild thermal treatment (150–200 °C, two hours) the gold moiety decomposes to liberate PPh3 and form quite uniform, disc-shaped gold nanoparticles on top of the organometallic monolayer. The resulting molecular junctions give rise to sigmoidal shaped I–V curves characteristic of through-molecule conductance, rather than linear, ohmic traces associated with metallic contacts (i.e. short circuits). This work therefore demonstrates the feasibility of thermal processing routes to form good quality molecular junctions from organometallic complexes of relatively complex molecular structure capped with uniformly-shaped nanoparticles formed in situ.P. C. is grateful for financial assistance from Ministerio de Economía y Competitividad from Spain and fondos FEDER in the framework of project MAT2016-78257-R. S. M. and P. C. acknowledge support from DGA/Fondos FEDER (construyendo Europa desde Aragón) for funding PLATON research group (E31_17R). S. G. E. held a Durham Doctoral Scholarship, further supported by the University of Western Australia. S. B. held a scholarship for doctoral studies from the University of Western Australia International Research Training Scholarship Program. P. J. L. gratefully acknowledges support from the Australian Research Council (DP140100855).Peer reviewe

    Commercial influenza vaccines vary in HA-complex structure and in induction of cross-reactive HA antibodies

    No full text
    Here, Myers and Gallagher et al. characterize the structural organization of commercial influenza vaccines. The vaccines differ in their structural composition and identify a “spiked nanodisc” arrangement of hemagglutinin (HA) with increased display and immunogenicity of the conserved stem region of HA
    corecore