15,441 research outputs found
Documentation of a ground hydrology parameterization for use in the GISS atmospheric general circulation model
The moisture transport processes related to the earth's surface relevant to the ground circulation model GCM are presented. The GHM parametrizations considered are: (1) ground wetness and soil parameters; (2) precipitation; (3) evapotranspiration; (4) surface storage of snow and ice; and (5) runout. The computational aspects of the GHM using computer programs and flow charts are described
Deconvolution of Images from BLAST 2005: Insight into the K3-50 and IC 5146 Star-forming Regions
We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Compared to the direct Fourier transform method of deconvolution, the L-R operation restores images with better-controlled background noise and increases source detectability. Intermediate iterated images are useful for studying extended diffuse structures, while the later iterations truly enhance point sources to near the designed diffraction limit of the telescope. The L-R method of deconvolution is efficient in resolving compact sources in crowded regions while simultaneously conserving their respective flux densities. We have analyzed its performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available high-resolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4'.5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the spectral energy distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21 cm radio continuum and ^(12)CO molecular line emission. The restored extended large-scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high-resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below ~ 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power young stellar objects. Further evidence for starless clumps has also been found in the IC 5146 region
Correlations in the (Sub)millimeter Background from ACT × BLAST
We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub)millimeter background at 250, 350, and 500 μm (1200, 860, and 600 GHz) from observations made with the Balloon-borne Large Aperture Submillimeter Telescope (BLAST); and at 1380 and 2030 μm (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope (ACT). The overlapping observations cover 8.6 deg^2 in an area relatively free of Galactic dust near the south ecliptic pole. The ACT bands are sensitive to radiation from the cosmic microwave background, to the Sunyaev-Zel'dovich effect from galaxy clusters, and to emission by radio and dusty star-forming galaxies (DSFGs), while the dominant contribution to the BLAST bands is from DSFGs. We confirm and extend the BLAST analysis of clustering with an independent pipeline and also detect correlations between the ACT and BLAST maps at over 25σ significance, which we interpret as a detection of the DSFGs in the ACT maps. In addition to a Poisson component in the cross-frequency power spectra, we detect a clustered signal at 4σ, and using a model for the DSFG evolution and number counts, we successfully fit all of our spectra with a linear clustering model and a bias that depends only on redshift and not on scale. Finally, the data are compared to, and generally agree with, phenomenological models for the DSFG population. This study demonstrates the constraining power of the cross-frequency correlation technique to constrain models for the DSFGs. Similar analyses with more data will impose tight constraints on future models
Planck pre-launch status: The HFI instrument, from specification to actual performance
Context. The High Frequency Instrument (HFI) is one of the two focal instruments of the Planck mission. It will observe the whole sky in six
bands in the 100 GHz−1 THz range.
Aims. The HFI instrument is designed to measure the cosmic microwave background (CMB) with a sensitivity limited only by fundamental
sources: the photon noise of the CMB itself and the residuals left after the removal of foregrounds. The two high frequency bands will provide
full maps of the submillimetre sky, featuring mainly extended and point source foregrounds. Systematic effects must be kept at negligible levels
or accurately monitored so that the signal can be corrected. This paper describes the HFI design and its characteristics deduced from ground tests
and calibration.
Methods. The HFI instrumental concept and architecture are feasible only by pushing new techniques to their extreme capabilities, mainly:
(i) bolometers working at 100 mK and absorbing the radiation in grids; (ii) a dilution cooler providing 100 mK in microgravity conditions;
(iii) a new type of AC biased readout electronics and (iv) optical channels using devices inspired from radio and infrared techniques.
Results. The Planck-HFI instrument performance exceeds requirements for sensitivity and control of systematic effects. During ground-based
calibration and tests, it was measured at instrument and system levels to be close to or better than the goal specification
Evidence for Environmental Changes in the Submillimeter Dust Opacity
The submillimeter opacity of dust in the diffuse interstellar medium (ISM) in the Galactic plane has been quantified using a pixel-by-pixel correlation of images of continuum emission with a proxy for column density. We used multi-wavelength continuum data: three Balloon-borne Large Aperture Submillimeter Telescope bands at 250, 350, and 500 μm and one IRAS band at 100 μm. The proxy is the near-infrared color excess, E(J – K_s), obtained from the Two Micron All Sky Survey. Based on observations of stars, we show how well this color excess is correlated with the total hydrogen column density for regions of moderate extinction. The ratio of emission to column density, the emissivity, is then known from the correlations, as a function of frequency. The spectral distribution of this emissivity can be fit by a modified blackbody, whence the characteristic dust temperature T and the desired opacity σ_e(1200) at 1200 GHz or 250 μm can be obtained. We have analyzed 14 regions near the Galactic plane toward the Vela molecular cloud, mostly selected to avoid regions of high column density (N_H > 10^(22) cm^(–2)) and small enough to ensure a uniform dust temperature. We find σ_e(1200) is typically (2-4) × 10^(–25) cm^2 H^(–1) and thus about 2-4 times larger than the average value in the local high Galactic latitude diffuse atomic ISM. This is strong evidence for grain evolution. There is a range in total power per H nucleon absorbed (and re-radiated) by the dust, reflecting changes in the strength of the interstellar radiation field and/or the dust absorption opacity. These changes in emission opacity and power affect the equilibrium T, which is typically 15 K, colder than at high latitudes. Our analysis extends, to higher opacity and lower temperature, the trend of increasing σ_e(1200) with decreasing T that was found at high latitudes. The recognition of changes in the emission opacity raises a cautionary flag because all column densities deduced from dust emission maps, and the masses of compact structures within them, depend inversely on the value adopted
{BiQ} Analyzer {HiMod}: An Interactive Software Tool for High-throughput Locus-specific Analysis of 5-Methylcytosine and its Oxidized Derivatives
Recent data suggest important biological roles for oxidative modifications of methylated cytosines, specifically hydroxymethylation, formylation and carboxylation. Several assays are now available for profiling these DNA modifications genome-wide as well as in targeted, locus-specific settings. Here we present BiQ Analyzer HiMod, a user-friendly software tool for sequence alignment, quality control and initial analysis of locus-specific DNA modification data. The software supports four different assay types, and it leads the user from raw sequence reads to DNA modification statistics and publication-quality plots. BiQ Analyzer HiMod combines well-established graphical user interface of its predecessor tool, BiQ Analyzer HT, with new and extended analysis modes. BiQ Analyzer HiMod also includes updates of the analysis workspace, an intuitive interface, a custom vector graphics engine and support of additional input and output data formats. The tool is freely available as a stand-alone installation package from http://biq-analyzer-himod.bioinf.mpi-inf.mpg.de/
The Balloon-Borne Large Aperture Submillimeter Telescope (BLAST) 2005: A 10 deg^2 Survey of Star Formation in Cygnus X
We present Cygnus X in a new multi-wavelength perspective based on an unbiased BLAST survey at 250, 350, and 500 μm, combined with rich data sets for this well-studied region. Our primary goal is to investigate the early stages of high-mass star formation. We have detected 184 compact sources in various stages of evolution across all three BLAST bands. From their well-constrained spectral energy distributions, we obtain the physical properties mass, surface density, bolometric luminosity, and dust temperature. Some of the bright sources reaching 40 K contain well-known compact H_(II) regions. We relate these to other sources at earlier stages of evolution via the energetics as deduced from their position in the luminosity-mass (L-M) diagram. The BLAST spectral coverage, near the peak of the spectral energy distribution of the dust, reveals fainter sources too cool (~10 K) to be seen by earlier shorter-wavelength surveys like IRAS. We detect thermal emission from infrared dark clouds and investigate the phenomenon of cold "starless cores" more generally. Spitzer images of these cold sources often show stellar nurseries, but these potential sites for massive star formation are "starless" in the sense that to date there is no massive protostar in a vigorous accretion phase. We discuss evolution in the context of the L-M diagram. Theory raises some interesting possibilities: some cold massive compact sources might never form a cluster containing massive stars, and clusters with massive stars might not have an identifiable compact cold massive precursor
Composite infrared bolometers with Si_3N_4 micromesh absorbers
We report the design and performance of 300-mK composite bolometers that use micromesh absorbers and support structures patterned from thin films of low-stress silicon nitride. The small geometrical filling factor of the micromesh absorber provides 20× reduction in heat capacity and cosmic ray cross section relative to a solid absorber with no loss in IR-absorption efficiency. The support structure is mechanically robust and has a thermal conductance, G < 2 × 10^(−11) W/K, which is four times smaller than previously achieved at 300 mK. The temperature rise of the bolometer is measured with a neutron transmutation doped germanium thermistor attached to the absorbing mesh. The dispersion in electrical and thermal parameters of a sample of 12 bolometers optimized for the Sunyaev–Zel’dovich Infrared Experiment is ±7% in R (T), ±5% in optical efficiency, and ±4% in G
- …