1,767 research outputs found

    Changes in standard of candidates taking the MRCP(UK) Part 1 examination, 1985 to 2002: Analysis of marker questions

    Get PDF
    The maintenance of standards is a problem for postgraduate medical examinations, particularly if they use norm-referencing as the sole method of standard setting. In each of its diets, the MRCP(UK) Part 1 Examination includes a number of marker questions, which are unchanged from their use in a previous diet. This paper describes two complementary studies of marker questions for 52 diets of the MRCP(UK) Part 1 Examination over the years 1985 to 2001 to assess whether standards have changed

    The Impact of Augmented Information on Visuo-Motor Adaptation in Younger and Older Adults

    Get PDF
    BACKGROUND: Adjustment to a visuo-motor rotation is known to be affected by ageing. According to previous studies, the age-related differences primarily pertain to the use of strategic corrections and the generation of explicit knowledge on which strategic corrections are based, whereas the acquisition of an (implicit) internal model of the novel visuo-motor transformation is unaffected. The present study aimed to assess the impact of augmented information on the age-related variation of visuo-motor adjustments. METHODOLOGY/PRINCIPAL FINDINGS: Participants performed aiming movements controlling a cursor on a computer screen. Visual feedback of direction of cursor motion was rotated 75 degrees relative to the direction of hand motion. Participants had to adjust to this rotation in the presence and absence of an additional hand-movement target that explicitly depicted the input-output relations of the visuo-motor transformation. An extensive set of tests was employed in order to disentangle the contributions of different processes to visuo-motor adjustment. Results show that the augmented information failed to affect the age-related variations of explicit knowledge, adaptive shifts, and aftereffects in a substantial way, whereas it clearly affected initial direction errors during practice and proprioceptive realignment. CONCLUSIONS: Contrary to expectations, older participants apparently made no use of the augmented information, whereas younger participants used the additional movement target to reduce initial direction errors early during practice. However, after a first block of trials errors increased, indicating a neglect of the augmented information, and only slowly declined thereafter. A hypothetical dual-task account of these findings is discussed. The use of the augmented information also led to a selective impairment of proprioceptive realignment in the younger group. The mere finding of proprioceptive realignment in adaptation to a visuo-motor rotation in a computer-controlled setup is noteworthy since visual and proprioceptive information pertain to different objects

    The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat

    Full text link
    We describe the SPIDER flight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic long-duration balloon flight. The cryostat, one of the largest to have flown on a stratospheric payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high flow impedance connection between the main liquid helium tank and a smaller superfluid tank, allowing the latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle helium-3 adsorption refrigerator that further cools the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig

    Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy

    Full text link
    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide new insights to understand the evolution of galaxies, measuring the evolution of the cosmic star formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected new phenomena. This review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201

    Insensitivity of chloroplast gene expression to DNA methylation

    Get PDF
    Presence and possible functions of DNA methylation in plastid genomes of higher plants have been highly controversial. While a number of studies presented evidence for the occurrence of both cytosine and adenine methylation in plastid genomes and proposed a role of cytosine methylation in the transcriptional regulation of plastid genes, several recent studies suggested that at least cytosine methylation may be absent from higher plant plastid genomes. To test if either adenine or cytosine methylation can play a regulatory role in plastid gene expression, we have introduced cyanobacterial genes for adenine and cytosine DNA methyltransferases (methylases) into the tobacco plastid genome by chloroplast transformation. Using DNA cleavage with methylation-sensitive and methylation-dependent restriction endonucleases, we show that the plastid genomes in the transplastomic plants are efficiently methylated. All transplastomic lines are phenotypically indistinguishable from wild-type plants and, moreover, show no alterations in plastid gene expression. Our data indicate that the expression of plastid genes is not sensitive to DNA methylation and, hence, suggest that DNA methylation is unlikely to be involved in the transcriptional regulation of plastid gene expression

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    A potential role for muscle in glucose homeostasis: in vivo kinetic studies in glycogen storage disease type 1a and fructose-1,6-bisphosphatase deficiency

    Get PDF
    A potential role for muscle in glucose homeostasis was recently suggested based on characterization of extrahepatic and extrarenal glucose-6-phosphatase (glucose-6-phosphatase-beta). To study the role of extrahepatic tissue in glucose homeostasis during fasting glucose kinetics were studied in two patients with a deficient hepatic and renal glycogenolysis and/or gluconeogenesis. Endogenous glucose production (EGP), glycogenolysis (GGL), and gluconeogenesis (GNG) were quantified with stable isotopes in a patient with glycogen storage disease type 1a (GSD-1a) and a patient with fructose-1,6-bisphosphatase (FBPase) deficiency. The [6,6-H-2(2)]glucose dilution method in combination with the deuterated water method was used during individualized fasting tests. Both patients became hypoglycemic after 2.5 and 14.5 h fasting, respectively. At that time, the patient with GSD-1a had EGP 3.84 mu mol/kg per min (30% of normal EGP after an overnight fast), GGL 3.09 mu mol/kg per min, and GNG 0.75 mu mol/kg per min. The patient with FBPase deficiency had EGP 8.53 mu mol/kg per min (62% of normal EGP after an overnight fast), GGL 6.89 mu mol/kg per min GGL, and GNG 1.64 mu mol/kg per min. EGP was severely hampered in both patients, resulting in hypoglycemia. However, despite defective hepatic and renal GNG in both disorders and defective hepatic GGL in GSD-1a, both patients were still able to produce glucose via both pathways. As all necessary enzymes of these pathways have now been functionally detected in muscle, a contribution of muscle to EGP during fasting via both GGL as well as GNG is suggeste
    corecore