8 research outputs found

    The distribution of functional N-cycle related genes and ammonia and nitrate nitrogen in soil profiles fertilized with mineral and organic N fertilizer

    Get PDF
    Nitrogen transformation in soil is a complex process and the soil microbial population can regulate the potential for N mineralization, nitrification and denitrification. Here we show that agricultural soils under standard agricultural N-management are consistently characterized by a high presence of gene copies for some of the key biological activities related to the N-cycle. This led to a strong NO3- reduction (75%) passing from the soil surface (15.38 \ub1 11.36 g N-NO3 kg-1 on average) to the 1 m deep layer (3.92 \ub1 4.42 g N-NO3 kg-1 on average), and ensured low nitrate presence in the deepest layer. Under these circumstances the other soil properties play a minor role in reducing soil nitrate presence in soil. However, with excessive N fertilization, the abundance of bacterial gene copies is not sufficient to explain N leaching in soil and other factors, i.e. soil texture and rainfall, become more important in controlling these aspects

    Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer : agronomic performance, odours, and ammonia emission impacts

    No full text
    Anaerobic digestion produces a biologically stable and high-value fertilizer product, the digestate, which can be used as an alternative to mineral fertilizers on crops. However, misuse of digestate can lead to annoyance for the public (odours) and to environmental problems such as nitrate leaching and ammonia emissions into the air. Full field experimental data are needed to support the use of digestate in agriculture, promoting its correct management. In this work, short-term experiments were performed to substitute mineral N fertilizers (urea) with digestate and products derived from it to the crop silage maize. Digestate and the liquid fraction of digestate were applied to soil at pre-sowing and as topdressing fertilizers in comparison with urea, both by surface application and subsurface injection during the cropping seasons 2012 and 2013. After each fertilizer application, both odours and ammonia emissions were measured, giving data about digestate and derived products' impacts.The AD products could substitute for urea without reducing crop yields, apart from the surface application of AD-derived fertilizers. Digestate and derived products, because of high biological stability acquired during the AD, had greatly reduced olfactometry impact, above all when they were injected into soils (82-88% less odours than the untreated biomass, i.e. cattle slurry). Ammonia emission data indicated, as expected, that the correct use of digestate and derived products required their injection into the soil avoiding, ammonia volatilization into the air and preserving fertilizer value. Sub-surface injection allowed ammonia emissions to be reduced by 69% and 77% compared with surface application during the 2012 and 2013 campaigns

    Correction to: Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial (Journal of Translational Medicine, (2020), 18, 1, (405), 10.1186/s12967-020-02573-9)

    No full text
    Following publication of the original article [1] the authors identified that the collaborators of the TOCIVID-19 investigators, Italy were only available in the supplementary file. The original article has been updated so that the collaborators are correctly acknowledged. For clarity, all collaborators are listed in this correction article

    Correction to: Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial (Journal of Translational Medicine, (2020), 18, 1, (405), 10.1186/s12967-020-02573-9)

    No full text
    corecore