433 research outputs found

    Synthesis of monodispersed Ag-doped bioactive glass nanoparticles via surface modification

    Get PDF
    © 2016 by the authors.Monodispersed spherical Ag-doped bioactive glass nanoparticles (Ag-BGNs) were synthesized by a modified Stöber method combined with surface modification. The surface modification was carried out at 25, 60, and 80 °C, respectively, to investigate the influence of processing temperature on particle properties. Energy-dispersive X-ray spectroscopy (EDS) results indicated that higher temperatures facilitate the incorporation of Ag. Hydroxyapatite (HA) formation on Ag-BGNs was detected upon immersion of the particles in simulated body fluid for 7 days, which indicated that Ag-BGNs maintained high bioactivity after surface modification. The conducted antibacterial assay confirmed that Ag-BGNs had an antibacterial effect on E. coli. The above results thereby suggest that surface modification is an effective way to incorporate Ag into BGNs and that the modified BGNs can remain monodispersed as well as exhibit bioactivity and antibacterial capability for biomedical applications

    Fabrication and characterization of Ag- and Ga-doped mesoporous glass-coated scaffolds based on natural marine sponges with improved mechanical properties

    Get PDF
    Natural marine sponges were used as sacrificial template for the fabrication of bioactive glassbased scaffolds. After sintering at 1050 ÂșC, the resulting samples were additionally coated with a sol silicate solution containing biologically active ions (Ag and Ga), well-known for their antibacterial properties in comparison with standard scaffolds made by PU foam templates. The produced scaffolds were characterized by superior mechanical properties (maximum compressive strength of 4 MPa) and total porosity of ~80%. Direct cell culture tests performed on the uncoated and coated samples showed positive results in terms of adhesion, proliferation, and differentiation of MC3T3-E1 cells. Moreover, vascular endothelial growth factor (VEGF) secretion from cells in contact with scaffold dissolution products was measured after 7 and 10 days of incubation, showing promising angiogenic results for bone tissue engineering applications. The antibacterial potential of the produced samples was assessed by performing agar diffusion tests against both Gram-positive and Gram-negative bacteria.EU Horizon 2020 project COACH 64255

    Radio morphology-accretion mode link in FRII low-excitation radio galaxies

    Full text link
    Fanaroff-Riley II low-excitation radio galaxies (FRII-LERGs) are characterized by weak nuclear excitation on pc-scales and by properties typical of powerful FRIIs (defined as high-excitation, hereafter HERGs/BLRGs) on kp-scales. Since a link between the accretion properties and the power of the produced jets is expected both from theory and observations, their nature is still debated. In this work we investigate the X-ray properties of a complete sample of 19 FRII-LERGs belonging to the 3CR catalog, exploiting Chandra and XMM-Newton archival data. We also analyze 32 FRII-HERGs/BLRGs with Chandra data as a control sample. We compared FRII-LERG and FRII-HERG/BLRG X-ray properties and optical data available in literature to obtain a wide outlook of their behavior. The low accretion rate estimates for FRII-LERGs, from both X-ray and optical bands, allow us to firmly reject the hypothesis for that they are the highly obscured counterpart of powerful FRII-HERGs/BLRGs. Therefore, at least two hypothesis can be invoked to explain the FRII-LERGs nature: (i) they are evolving from classical FRIIs because of the depletion of accreting cold gas in the nuclear region, while the extended radio emission is the heritage of a past efficiently accreting activity; (ii) they are an intrinsically distinct class of objects with respect to classical FRIs/FRIIs. Surprisingly, in this direction a correlation between accretion rates and environmental richness is found in our sample. The richer the environment, the more inefficient is the accretion. In this framework, the FRII-LERGs are intermediate between FRIs and FRII-HERGs/BLRGs both in terms of accretion rate and environment.Comment: 13 pages, 7 figures, Accepted for publication in MNRA

    Large-scale radio morphology and nuclear accretion in FRII-low-excitation radio galaxies

    Get PDF
    Radio galaxies (RGs) are among the most energetic manifestation of the AGN phenomenon and, as such, are extraordinarily relevant to address important unknowns relating accretion and ejection, and to investigate the role of the surrounding environment in shaping the radio morphology. The best candidates for this pioneering study are the RGs classified as FRII-LERGs, since they show both a radio morphology typical of powerful RGs (expected to have a standard accretion disc) and have an inefficient engine, as suggested by their optical spectra. In this work we study the X-ray properties of all the FRII-LERGs of the 3CR sample at z<0.3 testing three possible scenarios: (i) FRII-LERGs are recently switched-off high-excitation RGs (HERGs) with efficient accretion disc; (ii) FRII-LERGs are strongly absorbed HERGs; (iii) FRII-LERGs are inefficient accretors and their large-scale radio emission is mainly determined by the environment. These results will be further supplemented by multi-wavelength observations, with particular attention to the radio band

    On the Continuous Measurement of the LHC Beta-Function - Prototype Studies at the SPS

    Get PDF
    Until now, the continuous monitoring of the LHC lattice has been considered impractical due to tight constraints on the maximum allowed beam excitations and acquisition time usually required for betatron function measurements. As a further exploitation of the Base-Band-Tune (BBQ) detection principle, already widely used for tune diagnostics, a real-time beta-beat measurement prototype has been successfully tested at the CERN SPS and is based on the continuous measurement of the cell-to-cell betatron phase advance. Tests show that the phase resolution is better than a degree corresponding to a peak-to-peak beta-beat resolution of better than a percent. Due to the system’s high sensitivity, it required only micrometre-range excitation, making it compatible with nominal LHC operation. This contribution discusses results, measurement systematics and exploitation possibilities that may be used to improve the nominal LHC performance

    The TeV-emitting radio galaxy 3C 264. VLBI kinematics and SED modeling

    Get PDF
    Context. In March 2018, the detection by VERITAS of very-high-energy emission (VHE &gt; 100 GeV) from 3C 264 was reported. This is the sixth, and second most distant, radio galaxy ever detected in the TeV regime. Aims: In this article we present a radio and X-ray analysis of the jet in 3C 264. We determine the main physical parameters of the parsec-scale flow and explore the implications of the inferred kinematic structure for radiative models of this Îł-ray emitting jet. Methods: The radio data set is comprised of VLBI observations at 15 GHz from the MOJAVE program, and covers a time period of about two years. Through a segmented wavelet decomposition method (WISE code), we estimated the apparent displacement of individual plasma features; we then performed a pixel-based analysis of the stacked image to determine the jet shape. The X-ray data set includes all available observations from the Chandra, XMM, and Swift satellites, and is used, together with archival data in the other bands, to build the spectral energy distribution (SED). Results: Proper motion is mostly detected along the edges of the flow, which appears strongly limb brightened. The apparent speeds increase as a function of distance from the core up to a maximum of ̃11.5 c. This constrains the jet viewing angle to assume relatively small values (Ξ â‰Č 10°). In the acceleration region, extending up to a de-projected distance of ̃4.8 × 104 Schwarzschild radii (̃11 pc), the jet is collimating (r ∝ z0.40 ± 0.04), as predicted for a magnetically-driven plasma flow. By assuming that the core region is indeed magnetically dominated (UB/Ue &gt; 1), the SED and the jet power can be well reproduced in the framework of leptonic models, provided that the high-energy component is associated to a second emitting region. The possibility that this region is located at the end of the acceleration zone, either in the jet layer or in the spine, is explored in the modeling

    Characterisation of Bioglass based foams developed via replication of natural marine sponges

    No full text
    A comparative characterisation of Bioglass based scaffolds for bone tissue engineering applications developed via a replication technique of natural marine sponges as sacrificial template is presented, focusing on their architecture and mechanical properties. The use of these sponges presents several advantages, including the possibility of attaining higher mechanical properties than those scaffolds made by foam replica method (up to 4 MPa) due to a decrease in porosity (68-76%) without affecting the pore interconnectivity (higher than 99%). The obtained pore structure possesses not only pores with a diameter in the range 150-500 mm, necessary to induce bone ingrowth, but also pores in the range of 0-200 mm, which are requested for complete integration of the scaffold and for neovascularisation. In this way, it is possible to combine the main properties that a three-dimensional scaffold should have for bone regeneration: interconnected and high porosity, adequate mechanical properties and bioactivity
    • 

    corecore