697 research outputs found

    Radio observations of active galactic nuclei with mm-VLBI

    Full text link
    Over the past few decades, our knowledge of jets produced by active galactic nuclei (AGN) has greatly progressed thanks to the development of very-long-baseline interferometry (VLBI). Nevertheless, the crucial mechanisms involved in the formation of the plasma flow, as well as those driving its exceptional radiative output up to TeV energies, remain to be clarified. Most likely, these physical processes take place at short separations from the supermassive black hole, on scales which are inaccessible to VLBI observations at centimeter wavelengths. Due to their high synchrotron opacity, the dense and highly magnetized regions in the vicinity of the central engine can only be penetrated when observing at shorter wavelengths, in the millimeter and sub-millimeter regimes. While this was recognized already in the early days of VLBI, it was not until the very recent years that sensitive VLBI imaging at high frequencies has become possible. Ongoing technical development and wide band observing now provide adequate imaging fidelity to carry out more detailed analyses. In this article we overview some open questions concerning the physics of AGN jets, and we discuss the impact of mm-VLBI studies. Among the rich set of results produced so far in this frequency regime, we particularly focus on studies performed at 43 GHz (7 mm) and at 86 GHz (3 mm). Some of the first findings at 230 GHz (1 mm) obtained with the Event Horizon Telescope are also presented.Comment: Published in The Astronomy & Astrophysics Review. Open access: https://link.springer.com/article/10.1007/s00159-017-0105-

    Exploring the bulk of the BL Lac object population:1. parsec-scale radio structures

    Full text link
    Context. The advent of Fermi is changing our understanding on the radio and gamma-ray emission in Active Galactic Nuclei. Contrary to pre-Fermi ideas, BL Lac objects are found to be the most abundant emitters in the gamma-ray band. However, since they are relatively weak radio sources, most of their parsec-scale structure and their multi-frequency properties are poorly understood and/or have not been investigated in a systematically fashion. Aims. Our main goal is to analyze the radio and gamma-ray emission properties of a sample of 42 BL Lacs selected, for the first time in the literature, with no constraint on their radio and gamma-ray flux densities/emission. Methods. Thanks to new Very Long Baseline Array observations at 8 and 15 GHz for the whole sample, we present here fundamental parameters such as radio flux densities, spectral index information, and parsec-scale structure. Moreover, we search for gamma-ray counterparts using data reported in the Second Catalog of Fermi Gamma-ray sources. Results. Parsec-scale radio emission is observed in the majority of the sources at both frequencies. Gamma-ray counterparts are found for 14/42 sources. Conclusions. The comparison between our results in radio and gamma-ray bands points out the presence of a large number of faint BL Lacs showing "non classical" properties such as low source compactness, core dominance, no gamma-ray emission and steep radio spectral indexes. A deeper multiwavelength analysis will be needed.Comment: 19 pages, 6 figures, 6 tables, accepted for publication in A&

    The FPGA-based Continious FFT Tune Measurement System for the LHC and its test at the CERN SPS

    Get PDF
    A base band tune (BBQ) measurement system has been developed at CERN. This system is based on a high-sensitivity direct-diode detection technique followed by a high resolution FFT algorithm implemented in an FPGA. The system allows acquisition of continuous real-time spectra with 32-bit resolution, while a digital frequency synthesiser (DFS) can provide an acquisition synchronised chirp excitation. All the implemented algorithms support dynamic reconfiguration of processing and excitation parameters. Results from both laboratory measurements and tests performed with beam at the CERN SPS are presented

    The magnetic field structure in CTA 102 from high-resolution mm-VLBI observations during the flaring state in 2016-2017

    Full text link
    CONTEXT: Investigating the magnetic field structure in the innermost regions of relativistic jets is fundamental to understanding the crucial physical processes giving rise to jet formation, as well as to their extraordinary radiation output up to γ-ray energies. AIMS: We study the magnetic field structure of the quasar CTA 102 with 3 and 7 mm VLBI polarimetric observations, reaching an unprecedented resolution (∼50 μas). We also investigate the variability and physical processes occurring in the source during the observing period, which coincides with a very active state of the source over the entire electromagnetic spectrum. METHODS: We perform the Faraday rotation analysis using 3 and 7 mm data and we compare the obtained rotation measure (RM) map with the polarization evolution in 7 mm VLBA images. We study the kinematics and variability at 7 mm and infer the physical parameters associated with variability. From the analysis of γ-ray and X-ray data, we compute a minimum Doppler factor value required to explain the observed high-energy emission. RESULTS: Faraday rotation analysis shows a gradient in RM with a maximum value of ∼6 × 104⁴ rad m⁻² and intrinsic electric vector position angles (EVPAs) oriented around the centroid of the core, suggesting the presence of large-scale helical magnetic fields. Such a magnetic field structure is also visible in 7 mm images when a new superluminal component is crossing the core region. The 7 mm EVPA orientation is different when the component is exiting the core or crossing a stationary feature at ∼0.1 mas. The interaction between the superluminal component and a recollimation shock at ∼0.1 mas could have triggered the multi-wavelength flares. The variability Doppler factor associated with such an interaction is large enough to explain the high-energy emission and the remarkable optical flare occurred very close in time.Accepted manuscrip

    On the Continuous Measurement of the LHC Beta-Function - Prototype Studies at the SPS

    Get PDF
    Until now, the continuous monitoring of the LHC lattice has been considered impractical due to tight constraints on the maximum allowed beam excitations and acquisition time usually required for betatron function measurements. As a further exploitation of the Base-Band-Tune (BBQ) detection principle, already widely used for tune diagnostics, a real-time beta-beat measurement prototype has been successfully tested at the CERN SPS and is based on the continuous measurement of the cell-to-cell betatron phase advance. Tests show that the phase resolution is better than a degree corresponding to a peak-to-peak beta-beat resolution of better than a percent. Due to the system’s high sensitivity, it required only micrometre-range excitation, making it compatible with nominal LHC operation. This contribution discusses results, measurement systematics and exploitation possibilities that may be used to improve the nominal LHC performance

    Characterisation of Bioglass based foams developed via replication of natural marine sponges

    No full text
    A comparative characterisation of Bioglass based scaffolds for bone tissue engineering applications developed via a replication technique of natural marine sponges as sacrificial template is presented, focusing on their architecture and mechanical properties. The use of these sponges presents several advantages, including the possibility of attaining higher mechanical properties than those scaffolds made by foam replica method (up to 4 MPa) due to a decrease in porosity (68-76%) without affecting the pore interconnectivity (higher than 99%). The obtained pore structure possesses not only pores with a diameter in the range 150-500 mm, necessary to induce bone ingrowth, but also pores in the range of 0-200 mm, which are requested for complete integration of the scaffold and for neovascularisation. In this way, it is possible to combine the main properties that a three-dimensional scaffold should have for bone regeneration: interconnected and high porosity, adequate mechanical properties and bioactivity

    Novel ion-doped mesoporous glasses for bone tissue engineering: Study of their structural characteristics influenced by the presence of phosphorous oxide

    Get PDF
    Ion-doped binary SiO2-CaO and ternary SiO2-CaO-P2O5 mesoporous bioactive glasses were synthesized and characterized to evaluate the influence of P2O5 in the glass network structure. Strontium, copper and cobalt oxides in a proportion of 0.8 mol% were selected as dopants because the osteogenic and angiogenic properties reported for these elements. Although the four glass compositions investigated presented analogous textural properties, TEM analysis revealed that the structure of those containing P2O5 exhibited an increased ordered mesoporosity. Furthermore, 29Si NMR revealed that the incorporation of P2O5 increased the network connectivity and that this compound captured the Sr2 +, Cu2 + and Co2 + ions preventing them to behave as modifiers of the silica network. In addition, 31P NMR results revealed that the nature of the cation directly influences the characteristics of the phosphate clusters. In this study, we have proven that phosphorous oxide entraps doping-metallic ions, granting these glasses with a greater mesopores order
    corecore