392 research outputs found

    Short-term effects of microstructured surfaces: role in cell differentiation toward a contractile phenotype

    Get PDF
    Cell adhesion plays a key role in cell behavior, in terms of migration, proliferation, differentiation and apoptosis. All of these events concur with tissue regeneration and remodeling mechanisms, integrating a complex network of intracellular signaling modules. Morphogenetic responses, which involve changes in cell shape, proliferation and differentiation, are thought to be controlled by both biochemical and biophysical cues. Indeed, the extracellular matrix not only displays adhesive ligands necessary for cell adhesion but also plays an essential biomechanical role - responsible, for instance, for the acquisition of the contractile phenotype. The substrate topography around the forming tissues and the associated mechanical stresses that are generated regulate cellular morphology, proliferation and differentiation. Thus, the ability to tailor topographical features around cells can be a crucial design parameter in tissue engineering applications, inducing cells to exhibit the required performances.In this work, we designed micropillared substrates using highly spaced arrays (interspacing equal to 25 µm) to evaluate the effects of topography on C2C12 myoblasts' adhesion and differentiation. Optical and fluorescence microscopy images were used to observe cell adhesion, together with Western blot analysis on vinculin and focal adhesion kinase (FAK) expression, a protein highly involved in adhesive processes. Differentiation marker (Myf5, myogenin and myosin heavy chain [MHC]) expression was also studied, in relation to the effect of different substrate topographies on the enhancement of a contractile phenotype. Our results demonstrated that microstructured surfaces may play a key role in the regeneration of functional tissues

    Collagen-based tissue engineering strategies for vascular medicine

    Get PDF
    Cardiovascular diseases (CVDs) account for the 31% of total death per year, making them the first cause of death in the world. Atherosclerosis is at the root of the most life-threatening CVDs. Vascular bypass/replacement surgery is the primary therapy for patients with atherosclerosis. The use of polymeric grafts for this application is still burdened by high-rate failure, mostly caused by thrombosis and neointima hyperplasia at the implantation site. As a solution for these problems, the fast re-establishment of a functional endothelial cell (EC) layer has been proposed, representing a strategy of crucial importance to reduce these adverse outcomes. Implant modifications using molecules and growth factors with the aim of speeding up the re-endothelialization process has been proposed over the last years. Collagen, by virtue of several favorable properties, has been widely studied for its application in vascular graft enrichment, mainly as a coating for vascular graft luminal surface and as a drug delivery system for the release of pro-endothelialization factors. Collagen coatings provide receptor-ligand binding sites for ECs on the graft surface and, at the same time, act as biological sealants, effectively reducing graft porosity. The development of collagen-based drug delivery systems, in which small-molecule and protein-based drugs are immobilized within a collagen scaffold in order to control their release for biomedical applications, has been widely explored. These systems help in protecting the biological activity of the loaded molecules while slowing their diffusion from collagen scaffolds, providing optimal effects on the targeted vascular cells. Moreover, collagen-based vascular tissue engineering substitutes, despite not showing yet optimal mechanical properties for their use in the therapy, have shown a high potential as physiologically relevant models for the study of cardiovascular therapeutic drugs and diseases. In this review, the current state of the art about the use of collagen-based strategies, mainly as a coating material for the functionalization of vascular graft luminal surface, as a drug delivery system for the release of pro-endothelialization factors, and as physiologically relevant in vitro vascular models, and the future trend in this field of research will be presented and discussed

    Heparin-Modified Collagen Gels for Controlled Release of Pleiotrophin: Potential for Vascular Applications

    Get PDF
    A fast re-endothelialization, along with the inhibition of neointima hyperplasia, are crucial to reduce the failure of vascular bypass grafts. Implants modifications with molecules capable of speeding up the re-endothelialization process have been proposed over the last years. However, clinical trials of angiogenic factor delivery have been mostly disappointing, underscoring the need to investigate a wider array of angiogenic factors. In this work, a drug release system based on a type I collagen hydrogel has been proposed for the controlled release of Pleiotrophin (PTN), a cytokine known for its pro-angiogenetic effects. Heparin, in virtue of its ability to sequester, protect and release growth factors, has been used to better control the release of PTN. Performances of the PTN drug delivery system on endothelial (ECs) and smooth muscle cells (SMCs) have been investigated. Structural characterization (mechanical tests and immunofluorescent analyses of the collagen fibers) was performed on the gels to assess if heparin caused changes in their mechanical behavior. The release of PTN from the different gel formulations has been analyzed using a PTN-specific ELISA assay. Cell viability was evaluated with the Alamar Blue Cell Viability Assay on cells directly seeded on the gels (direct test) and on cells incubated with supernatant, containing the released PTN, obtained from the gels (indirect test). The effects of the different gels on the migration of both ECs and SMCs have been evaluated using a Transwell migration assay. Hemocompatibility of the gel has been assessed with a clotting/hemolysis test. Structural analyses showed that heparin did not change the structural behavior of the collagen gels. ELISA quantification demonstrated that heparin induced a constant release of PTN over time compared to other conditions. Both direct and indirect viability assays showed an increase in ECs viability while no effects were noted on SMCs. Cell migration results evidenced that the heparin/PTN-modified gels significantly increased ECs migration and decreased the SMCs one. Finally, heparin significantly increased the hemocompatibility of the collagen gels. In conclusion, the PTN-heparin-modified collagen here proposed can represent an added value for vascular medicine, able to ameliorate the biological performance, and integration of vascular grafts

    Role of mechanical stretching in the modulation of myocytes phenotype: implications for tissue engineering

    Get PDF
    The phenotype of myocytes is regulated by various stimuli, including mechanical environment (Davis-Dusembery et al., 2011; Lu et al., 2011). Several studies examined the role of mechanical strain on myogenesis in skeletal muscle cells, but the mechanisms that dictate the effects of cyclic strain on myocytes phenotype are still not understood (Simmons et al., 2004). Cellular responses to mechanical stress depend on to the substrate deformation, frequency and duration of the applied mechanical stress (Kook et al., 2008). Physiologic mechanical stimuli may affect the properties of the tissues, leading also to the development of several pathologies. In this work, we studied the effects of different cyclic strains on C2C12 myoblasts phenotype. Cellular mechanisms involved in the mechanical stress-mediated modulation of myogenesis or osteogenesis were considered. In particular, low (2%) and high (15%) substrate deformations were applied and cell proliferation and differentiation markers (Myf5, Myogenin, Osteopontine, ALP) were observed by RT-PCR and western blot analyses. Results showed that cell phenotype switches from myogenic to osteogenic, depending on the dynamic conditions applied. In particular, the myogenic differentiation was inhibited through the down-regulation of muscle specific markers, and the up-regulation of the osteogenetic phenotype markers

    COLLAGEN CROSS-LINKER EFFECT ON THE MECHANICAL PROPERTIES OF THE RADICULAR HYBRID LAYER IN RESTORATIVE DENTISTRY: A NANOINDENTATION STUDY

    Get PDF
    Bond strength between the dentin and the restorative resins is deeply dependent on the nature of their interface. Resins impregnate dentin, which is rich in collagen fibers. This in vitro study aimed to evaluate the effect of collagen carbodiimide cross linker agent (EDC) on the mechanical properties of the adhesive interface in endodontically treated teeth. Twenty upper premolar teeth were selected and divided into two groups according to the dentin pretreatment procedures: no EDC application (group A) and EDC application (group B). Three typical zones, i.e. the dentin, the radicular hybrid layer and the resin, were analyzed using a Nanoindenter XP equipped with a diamond Berkovich indenter. The input curve was characterized by loading and unloading phases with a strain rate value of 0.1 s-1 and, an intermediate dumbbell phase of 30 s. The maximum indentation depth was set to be 200 nm. The load-displacement curves were analyzed by using the “Oliver and Pharr” method. The mean values of nanoindentation modulus were determined for the dentin, the radicular hybrid layer and the resin for both the samples with and without crosslinker. In general, the application of EDC was found to modify the mechanical properties of the radicular hybrid layer. The mechanical properties of the radicular hybrid layer could be related to the efficient infiltration of the adhesive systems and collagen crosslinker through dentin

    Angiogenic potential in biological hydrogels

    Get PDF
    Hydrogels are three-dimensional (3D) materials able to absorb and retain water in large amounts while maintaining their structural stability. Due to their considerable biocompatibility and similarity with the body\u2019s tissues, hydrogels are one of the most promising groups of biomaterials. The main application of these hydrogels is in regenerative medicine, in which they allow the formation of an environment suitable for cell differentiation and growth. Deriving from these hydrogels, it is, therefore, possible to obtain bioactive materials that can regenerate tissues. Because vessels guarantee the right amount of oxygen and nutrients but also assure the elimination of waste products, angiogenesis is one of the processes at the base of the regeneration of a tissue. On the other hand, it is a very complex mechanism and the parameters to consider are several. Indeed, the factors and the cells involved in this process are numerous and, for this reason, it has been a challenge to recreate a biomaterial able to adequately sustain the angiogenic process. However, in this review the focal point is the application of natural hydrogels in angiogenesis enhancing and their potential to guide this process

    A Gut-Ex-Vivo System to Study Gut Inflammation Associated to Inflammatory Bowel Disease (IBD)

    Get PDF
    Inflammatory bowel disease (IBD) is a complex, chronic, and dysregulated inflammatory condition which etiology is still largely unknown. Its prognosis and disease progression are highly variable and unpredictable. IBD comprises several heterogeneous inflammatory conditions ranging from Ulcerative Colitis (UC) to Crohn's Disease (CD). Importantly, a definite, well-established, and effective clinical treatment for these pathologies is still lacking. The urgent need for treatment is further supported by the notion that patients affected by UC or CD are also at risk of developing cancer. Therefore, a deeper understanding of the molecular mechanisms at the basis of IBD development and progression is strictly required to design new and efficient therapeutic regimens. Although the development of animal models has undoubtedly facilitated the study of IBD, such in vivo approaches are often expensive and time-consuming. Here we propose an organ ex vivo culture (Gut-Ex-Vivo system, GEVS) based on colon from Balb/c mice cultivated in a dynamic condition, able to model the biochemical and morphological features of the mouse models exposed to DNBS (5-12 days), in 5 h. Indeed, upon DNBS exposure, we observed a dose-dependent: (i) up-regulation of the stress-related protein transglutaminase 2 (TG2); (ii) increased intestinal permeability associated with deregulated tight junction protein expression; (iii) increased expression of pro-inflammatory cytokines, such as TNFα, IFNγ, IL1β, IL6, IL17A, and IL15; (iv) down-regulation of the anti-inflammatory IL10; and (v) induction of Endoplasmic Reticulum stress (ER stress), all markers of IBD. Altogether, these data indicate that the proposed model can be efficiently used to study the pathogenesis of IBD, in a time- and cost-effective manner

    Mechanisms involved in the cross-talk between humoral and mechanical cues underlying muscle wasting in cachexia

    Get PDF
    Introduction. Exercise training improves quality of life and survival of cancer patients. In an animal model of cancer cachexia we demonstrated that wheel running counteracts cachexia by releasing the autophagic flux. Exercise pleitropic effects include the alteration of circulating factors in favour of an anti-inflammatory environment and the activation of mechanotransduction pathways in muscle cells. Our goal is to assess whether mechanostransduciton per se is sufficient to elicit exercise effects in the presence of pro-cachectic factors of tumor origin. Serum response factor (SRF) is a transcription factor of pivotal importance for muscle homeostasis, which is activated with its co-factor MRTF by mechanostranduction in a way dependent on actin polymerisation. Methods. We use C26 tumor-bearing mice, in the absence or presence of wheel running, and mixed cultures of C2C12 myotubes and myoblasts treated with C26 conditioned medium (CM) in the absence or presence of cyclic stretch to mimic the mechanical stimulation occurring upon exercise. Results. In vivo both SRF expression and activity are differentially modulated by the C26 tumor, i.e. by humoral factors, and by exercise. In vitro we showed that CM had a negative effect on muscle cell cultures, both in terms of myotube atrophy and of myoblast recruitment and fusion, and that these effects were counteracted by cyclic stretch. We showed that CM repressed SRF-MRTF transcriptional activity, while mechanical stretch rescued their transcriptional activity; in addition, loss of function experiments demonstrated that SRF was necessary to mediate the beneficial effects of mechanical stimulation on muscle cells. At least part of the observed effects were mediated by the balance of pro- and anti-myogenic factor of the TGFbeta superfamily. Conclusions. We propose that the positive effects of exercise on cancer patients and mice may be specifically due to a mechanical response of muscle fibers affecting the secretion of myokines
    • …
    corecore