374 research outputs found

    Interactions between permeation and gating in the TMEM16B/anoctamin2 calcium-activated chloride channel

    Get PDF
    At least two members of the TMEM16/anoctamin family, TMEM16A (also known as anoctamin1) and TMEM16B (also known as anoctamin2), encode Ca2+-activated Cl- channels (CaCCs), which are found in various cell types and mediate numerous physiological functions. Here, we used whole-cell and excised inside-out patch-clamp to investigate the relationship between anion permeation and gating, two processes typically viewed as independent, in TMEM16B expressed in HEK 293T cells. The permeability ratio sequence determined by substituting Cl- with other anions (PX/PCl) was SCN- > I- > NO3- > Br- > Cl- > F- > gluconate. When external Cl- was substituted with other anions, TMEM16B activation and deactivation kinetics at 0.5 μM Ca2+ were modified according to the sequence of permeability ratios, with anions more permeant than Cl- slowing both activation and deactivation and anions less permeant than Cl- accelerating them. Moreover, replacement of external Cl- with gluconate, or sucrose, shifted the voltage dependence of steady-state activation (G-V relation) to more positive potentials, whereas substitution of extracellular or intracellular Cl- with SCN- shifted G-V to more negative potentials. Dose-response relationships for Ca2+ in the presence of different extracellular anions indicated that the apparent affinity for Ca2+ at +100 mV increased with increasing permeability ratio. The apparent affinity for Ca2+ in the presence of intracellular SCN- also increased compared with that in Cl-. Our results provide the first evidence that TMEM16B gating is modulated by permeant anions and provide the basis for future studies aimed at identifying the molecular determinants of TMEM16B ion selectivity and gating. © 2014 Betto et al

    Survival of patients with HCV cirrhosis and sustained virologic response is similar to the general population.

    Get PDF
    Background & Aims: Life expectancy of patients with compensated hepatitis C virus (HCV) cirrhosis achieving sustained virologic response (SVR) is limited by liver events as compared to the general population. Thus, survival benefit of SVR remains to be measured. Methods: The study includes prospective surveillance data from three cohorts of Italian patients with compensated HCV cirrhosis who achieved SVR on an interferon-based (IFN) regimen, compared to simultaneously observed non-SVR, untreated and decompensated patients. Overall survival was calculated from the date of start of IFN to death. The number of deaths expected during the at-risk period was determined by applying age- and sex-specific mortality rates recorded in Italy for person-years adequate for the enrolment period. The standardized mortality ratio (SMR) determined the relative risk of death over that of the age and sex matched general population. Results: Overall, 28/181 patients followed-up for a median period of 9.6 years (range 1–25 years) died. The 10 and 20-year overall survival rates for the whole series were 90.9% (95% CI, 84.3–94.8) and 62.9% (95% CI, 45.9–75.9), respectively. The number of expected deaths in the corresponding age and sex matched general population was 28.1, corresponding to a SMR = 1.00 (95% CI, 0.72–1.35), with an SMR for non-SVR patients of 3.85 (95% CI, 3.43–4.30), for untreated of 3.01 (95% CI, 2.64–3.42) and for decompensated of 6.70 (95% CI, 5.39–8.22). Conclusions: Patients with compensated HCV cirrhosis achieving SVR by IFN obtain a main benefit levelling their survival curve to that of the general population. Wider applicability of IFN-free regimens will possibly make this achievement more generalizable

    Development of an integrated environmental monitoring protocol for SARS-CoV-2 contamination. Applications at the IRCSS San Martino Polyclinic Hospital in Genoa, Italy

    Get PDF
    Scientific background: Environmental sampling of SARS-CoV-2 is a fundamental tool for evaluating the effectiveness of non-specific prophylaxis measures in counting their spread. The purpose of our work was to evaluate the effectiveness of the different sampling methods in the hospital setting to assess their correlation with the structural, functional, and operational situation of the monitored departments and to define the dynamics of the spread of the virus in indoor environments. Methods: The monitoring was carried out at the San Martino Polyclinic Hospital (Genoa, Italy) in the period from April 2020 to June 2021. The presence of viral RNA in the collected samples was evaluated by qPCR. The infection capacity of the sample collected was also evaluated by an in vitro challenge test on cells sensitive to SARS-CoV-2 infection. Results: The percentage of positivity with respect to the number of tests performed (sensitivity) were bubbler 50%, wipe test 17%, and challenge test 11%. Only 20% of the samples tested positive in the wipe test and 43% of the samples tested positive in the bubbler sampling were also positive in the challenge test. All the positivity obtained was detected at a distance of less than 2\u202fm and height of less than 1.5 from COVID-19 patient. Conclusions: Environmental contamination from SARS-CoV-2 detected at the San Martino Polyclinic Hospital is found lower than similar assessments performed in other hospitals both in Italy and abroad. Our study predicted that environmental monitoring of SARS-CoV-2 must be carried out in an integrated way by not using a single sampling method, as each individual test has a different biological significance and performance. However, the virus detected by wipe test is not a degraded viral fragment but an intact infecting virion, only in a modest percentage of cases

    Low- and high-fidelity modeling of sandwich-structured composite response to bird strike, as tools for a digital-twin-assisted damage diagnosis

    Get PDF
    EU, H2020 Smart, Green and Integrated Transport, Aviation program under the acronym EXTREME (Project reference 636549)

    Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters

    Get PDF
    open18siA distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets. A detailed functional characterization of many lysosomal channels and transporters is lacking, mainly due to technical difficulties in applying the standard patch-clamp technique to these small intracellular compartments. In this review, we focus on current methods used to unravel the functional properties of lysosomal ion channels and transporters, stressing their advantages and disadvantages and evaluating their fields of applicability.openFesta M.; Minicozzi V.; Boccaccio A.; Lagostena L.; Gradogna A.; Qi T.; Costa A.; Larisch N.; Hamamoto S.; Pedrazzini E.; Milenkovic S.; Scholz-Starke J.; Ceccarelli M.; Vitale A.; Dietrich P.; Uozumi N.; Gambale F.; Carpaneto A.Festa, M.; Minicozzi, V.; Boccaccio, A.; Lagostena, L.; Gradogna, A.; Qi, T.; Costa, A.; Larisch, N.; Hamamoto, S.; Pedrazzini, E.; Milenkovic, S.; Scholz-Starke, J.; Ceccarelli, M.; Vitale, A.; Dietrich, P.; Uozumi, N.; Gambale, F.; Carpaneto, A

    Colorectal cancer residual disease at maximal response to EGFR blockade displays a druggable Paneth cell–like phenotype

    Get PDF
    Blockade of epidermal growth factor receptor (EGFR) causes tumor regression in some patients with metastatic colorectal cancer (mCRC). However, residual disease reservoirs typically remain even after maximal response to therapy, leading to relapse. Using patient-derived xenografts (PDXs), we observed that mCRC cells surviving EGFR inhibition exhibited gene expression patterns similar to those of a quiescent subpopulation of normal intestinal secretory precursors with Paneth cell characteristics. Compared with untreated tumors, these pseudodifferentiated tumor remnants had reduced expression of genes encoding EGFR-activating ligands, enhanced activity of human epidermal growth factor receptor 2 (HER2) and HER3, and persistent signaling along the phosphatidylinositol 3-kinase (PI3K) pathway. Clinically, properties of residual disease cells from the PDX models were detected in lingering tumors of responsive patients and in tumors of individuals who had experienced early recurrence. Mechanistically, residual tumor reprogramming after EGFR neutralization was mediated by inactivation of Yes-associated protein (YAP), a master regulator of intestinal epithelium recovery from injury. In preclinical trials, Pan-HER antibodies minimized residual disease, blunted PI3K signaling, and induced long-term tumor control after treatment discontinuation. We found that tolerance to EGFR inhibition is characterized by inactivation of an intrinsic lineage program that drives both regenerative signaling during intestinal repair and EGFR-dependent tumorigenesis. Thus, our results shed light on CRC lineage plasticity as an adaptive escape mechanism from EGFR-targeted therapy and suggest opportunities to preemptively target residual disease

    Regulation of Bestrophins by Ca2+: A Theoretical and Experimental Study

    Get PDF
    Bestrophins are a recently discovered family of Cl− channels, for which no structural information is available. Some family members are activated by increased intracellular Ca2+ concentration. Bestrophins feature a well conserved Asp-rich tract in their COOH terminus (Asp-rich domain), which is homologous to Ca2+-binding motifs in human thrombospondins and in human big-conductance Ca2+- and voltage-gated K+ channels (BKCa). Consequently, the Asp-rich domain is also a candidate for Ca2+ binding in bestrophins. Based on these considerations, we constructed homology models of human bestrophin-1 (Best1) Asp-rich domain using human thrombospondin-1 X-ray structure as a template. Molecular dynamics simulations were used to identify Asp and Glu residues binding Ca2+ and to predict the effects of their mutations to alanine. We then proceeded to test selected mutations in the Asp-rich domain of the highly homologous mouse bestrophin-2. The mutants expressed in HEK-293 cells were investigated by electrophysiological experiments using the whole-cell voltage-clamp technique. Based on our molecular modeling results, we predicted that Asp-rich domain has two defined binding sites and that D301A and D304A mutations may impact the binding of the metal ions. The experiments confirmed that these mutations do actually affect the function of the protein causing a large decrease in the Ca2+-activated Cl− current, fully consistent with our predictions. In addition, other studied mutations (E306A, D312A) did not decrease Ca2+-activated Cl− current in agreement with modeling results
    • …
    corecore