52 research outputs found

    A direct approach to estimating false discovery rates conditional on covariates

    Get PDF
    Modern scientific studies from many diverse areas of research abound with multiple hypothesis testing concerns. The false discovery rate (FDR) is one of the most commonly used approaches for measuring and controlling error rates when performing multiple tests. Adaptive FDRs rely on an estimate of the proportion of null hypotheses among all the hypotheses being tested. This proportion is typically estimated once for each collection of hypotheses. Here, we propose a regression framework to estimate the proportion of null hypotheses conditional on observed covariates. This may then be used as a multiplication factor with the Benjaminiā€“Hochberg adjusted p-values, leading to a plug-in FDR estimator. We apply our method to a genome-wise association meta-analysis for body mass index. In our framework, we are able to use the sample sizes for the individual genomic loci and the minor allele frequencies as covariates. We further evaluate our approach via a number of simulation scenarios. We provide an implementation of this novel method for estimating the proportion of null hypotheses in a regression framework as part of the Bioconductor package swfdr

    Patient-oriented gene set analysis for cancer mutation data

    Get PDF
    Recent research has revealed complex heterogeneous genomic landscapes in human cancers. However, mutations tend to occur within a core group of pathways and biological processes that can be grouped into gene sets. To better understand the significance of these pathways, we have developed an approach that initially scores each gene set at the patient rather than the gene level. In mutation analysis, these patient-oriented methods are more transparent, interpretable, and statistically powerful than traditional gene-oriented methods

    Quantification and expert evaluation of evidence for chemopredictive biomarkers to personalize cancer treatment.

    Get PDF
    Predictive biomarkers have the potential to facilitate cancer precision medicine by guiding the optimal choice of therapies for patients. However, clinicians are faced with an enormous volume of often-contradictory evidence regarding the therapeutic context of chemopredictive biomarkers.We extensively surveyed public literature to systematically review the predictive effect of 7 biomarkers claimed to predict response to various chemotherapy drugs: ERCC1-platinums, RRM1-gemcitabine, TYMS-5-fluorouracil/Capecitabine, TUBB3-taxanes, MGMT-temozolomide, TOP1-irinotecan/topotecan, and TOP2A-anthracyclines. We focused on studies that investigated changes in gene or protein expression as predictors of drug sensitivity or resistance. We considered an evidence framework that ranked studies from high level I evidence for randomized controlled trials to low level IV evidence for pre-clinical studies and patient case studies.We found that further in-depth analysis will be required to explore methodological issues, inconsistencies between studies, and tumor specific effects present even within high evidence level studies. Some of these nuances will lend themselves to automation, others will require manual curation. However, the comprehensive cataloging and analysis of dispersed public data utilizing an evidence framework provides a high level perspective on clinical actionability of these protein biomarkers. This framework and perspective will ultimately facilitate clinical trial design as well as therapeutic decision-making for individual patients

    An Open-Publishing Response to the COVID-19 Infodemic

    Get PDF
    The COVID-19 pandemic catalyzed the rapid dissemination of papers and preprints investigating the disease and its associated virus, SARS-CoV-2. The multifaceted nature of COVID-19 demands a multidisciplinary approach, but the urgency of the crisis combined with the need for social distancing measures present unique challenges to collaborative science. We applied a massive online open publishing approach to this problem using Manubot. Through GitHub, collaborators summarized and critiqued COVID-19 literature, creating a review manuscript. Manubot automatically compiled citation information for referenced preprints, journal publications, websites, and clinical trials. Continuous integration workflows retrieved up-to-date data from online sources nightly, regenerating some of the manuscript\u27s figures and statistics. Manubot rendered the manuscript into PDF, HTML, LaTeX, and DOCX outputs, immediately updating the version available online upon the integration of new content. Through this effort, we organized over 50 scientists from a range of backgrounds who evaluated over 1,500 sources and developed seven literature reviews. While many efforts from the computational community have focused on mining COVID-19 literature, our project illustrates the power of open publishing to organize both technical and non-technical scientists to aggregate and disseminate information in response to an evolving crisis

    Collaborative, Multidisciplinary Evaluation of Cancer Variants Through Virtual Molecular Tumor Boards Informs Local Clinical Practices.

    Get PDF
    PURPOSE: The cancer research community is constantly evolving to better understand tumor biology, disease etiology, risk stratification, and pathways to novel treatments. Yet the clinical cancer genomics field has been hindered by redundant efforts to meaningfully collect and interpret disparate data types from multiple high-throughput modalities and integrate into clinical care processes. Bespoke data models, knowledgebases, and one-off customized resources for data analysis often lack adequate governance and quality control needed for these resources to be clinical grade. Many informatics efforts focused on genomic interpretation resources for neoplasms are underway to support data collection, deposition, curation, harmonization, integration, and analytics to support case review and treatment planning. METHODS: In this review, we evaluate and summarize the landscape of available tools, resources, and evidence used in the evaluation of somatic and germline tumor variants within the context of molecular tumor boards. RESULTS: Molecular tumor boards (MTBs) are collaborative efforts of multidisciplinary cancer experts equipped with genomic interpretation resources to aid in the delivery of accurate and timely clinical interpretations of complex genomic results for each patient, within an institution or hospital network. Virtual MTBs (VMTBs) provide an online forum for collaborative governance, provenance, and information sharing between experts outside a given hospital network with the potential to enhance MTB discussions. Knowledge sharing in VMTBs and communication with guideline-developing organizations can lead to progress evidenced by data harmonization across resources, crowd-sourced and expert-curated genomic assertions, and a more informed and explainable usage of artificial intelligence. CONCLUSION: Advances in cancer genomics interpretation aid in better patient and disease classification, more streamlined identification of relevant literature, and a more thorough review of available treatments and predicted patient outcomes

    Discovery of metabolic biomarkers for Duchenne muscular dystrophy within a natural history study

    Get PDF
    Serum metabolite profiling in Duchenne muscular dystrophy (DMD) may enable discovery of valuable molecular markers for disease progression and treatment response. Serum samples from 51 DMD patients from a natural history study and 22 age-matched healthy volunteers were profiled using liquid chromatography coupled to mass spectrometry (LC-MS) for discovery of novel circulating serum metabolites associated with DMD. Fourteen metabolites were found significantly altered (1% false discovery rate) in their levels between DMD patients and healthy controls while adjusting for age and study site and allowing for an interaction between disease status and age. Increased metabolites included arginine, creatine and unknown compounds at m/z of 357 and 312 while decreased metabolites included creatinine, androgen derivatives and other unknown yet to be identified compounds. Furthermore, the creatine to creatinine ratio is significantly associated with disease progression in DMD patients. This ratio sharply increased with age in DMD patients while it decreased with age in healthy controls. Overall, this study yielded promising metabolic signatures that could prove useful to monitor DMD disease progression and response to therapies in the future

    Systems biology Testing multiple biological mediators simultaneously

    No full text
    ABSTRACT Motivation: Modern biomedical and epidemiological studies often measure hundreds or thousands of biomarkers, such as gene expression or metabolite levels. Although there is an extensive statistical literature on adjusting for 'multiple comparisons' when testing whether these biomarkers are directly associated with a disease, testing whether they are biological mediators between a known risk factor and a disease requires a more complex null hypothesis, thus offering additional methodological challenges. Results: We propose a permutation approach that tests multiple putative mediators and controls the family wise error rate. We demonstrate that, unlike when testing direct associations, replacing the Bonferroni correction with a permutation approach that focuses on the maximum of the test statistics can significantly improve the power to detect mediators even when all biomarkers are independent. Through simulations, we show the power of our method is 2-5Ƃ larger than the power achieved by Bonferroni correction. Finally, we apply our permutation test to a case-control study of dietary risk factors and colorectal adenoma to show that, of 149 test metabolites, docosahexaenoate is a possible mediator between fish consumption and decreased colorectal adenoma risk. Availability and implementation: R-package included in online Supplementary Material

    Modulation of Radiation Response by the Tetrahydrobiopterin Pathway

    No full text
    Ionizing radiation (IR) is an integral component of our lives due to highly prevalent sources such as medical, environmental, and/or accidental. Thus, understanding of the mechanisms by which radiation toxicity develops is crucial to address acute and chronic health problems that occur following IR exposure. Immediate formation of IR-induced free radicals as well as their persistent effects on metabolism through subsequent alterations in redox mediated inter- and intracellular processes are globally accepted as significant contributors to early and late effects of IR exposure. This includes but is not limited to cytotoxicity, genomic instability, fibrosis and inflammation. Damage to the critical biomolecules leading to detrimental long-term alterations in metabolic redox homeostasis following IR exposure has been the focus of various independent investigations over last several decades. The growth of the ā€œomicsā€ technologies during the past decade has enabled integration of ā€œdata from traditional radiobiology researchā€, with data from metabolomics studies. This review will focus on the role of tetrahydrobiopterin (BH4), an understudied redox-sensitive metabolite, plays in the pathogenesis of post-irradiation normal tissue injury as well as how the metabolomic readout of BH4 metabolism fits in the overall picture of disrupted oxidative metabolism following IR exposure
    • ā€¦
    corecore