64 research outputs found

    Search for Ο„β†’ΞΌ+Ξ³\tau\to\mu+\gamma decay at Super cβˆ’Ο„c -\tau factory

    Full text link
    A Monte Carlo study of possible background processes in a search for Ο„β†’ΞΌΞ³\tau \to \mu \gamma decay has been performed for conditions of the Super cβˆ’Ο„c-\tau factory (CTF) (at a center-of-mass energy 3.686 GeV, 3.77 GeV and 4.17 GeV). The background from Ο„+Ο„βˆ’\tau^{+}\tau^{-} events has been analysed. Selection criteria for background suppression are suggested and necessary requirements on the detector characteristics have been found. The CTF can successfully compete with the Super B-factory in a search for Ο„β†’ΞΌΞ³\tau \to \mu \gamma decay.Comment: 3 pages, 1 figures; contribution to the Proceedings of the PHIPSI11 Workshop (Novosibirsk, Russia, 19-22 September 2011

    Π₯ирургичСскоС Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ»ΠΎΡ‚ΠΊΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠΉ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΏΠ°Π»ΡŒΡ†Π΅Π² стоп (ΠΎΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹)

    Get PDF
    The high prevalence of hammertoe deformity in the population, the effect of this pathology on the ability and the quality of life allow us to consider this pathology as a important medical problem. The most common surgery is arthrodesis of the proximal interphalangeal joint with a Weil-osteotomy. Specific complication is a floating toe, which leads to overload of adjacent toes and metatarsal heads. For to correct the instability of the metatarsophalangeal joint, the flexor to extensor transfer Girdlestone-Taylor can be used. However, the use of this procedure had limitations associated with difficult surgery techniques and below the average cosmetic result of the procedure. In the study of the causes of hammertoe deformity, the conclusion of the importance of the plantar plate of the metatarsophalangeal joint was made. Plantar plate repair leads to the stabilization of the metatarsophalangeal joint, reduces the risk of developing a floating toe, leads to the restoration of the support function and normal biomechanics of movement and foot function. Simultaneously, the plantar plate repair technically complicates surgical treatment. An promising direction of treatment is minimally invasive technologies for correction of hammertoe deformity that can reduce the risk of infectious complications, improve the cosmetic result of the surgery and reduce the risk of postoperative contracture in the joint, the time of the operation and rehabilitation, postoperative pain, emotional stress for the patient. However, the technique this type of surgery is more difficult, it requires a long training of the surgeon. The potential risk of intraoperative damage to various anatomical structures increases, which requires use of special tools during surgery. The choice of the surgical procedures is based on the individual characteristics of the pathological changes in the patients foot, the equipment of the operating room and the experience of the surgeon. It is necessary to evaluate the elasticity of the deformity, the stability of the metatarsophalangeal joint, the presence and severity of concomitant overloading metatarsalgia, as well as to take into account the subjective personalized requirements and expectations of the patient.Широкая Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ»ΠΎΡ‚ΠΊΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠΉ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΏΠ°Π»ΡŒΡ†Π΅Π² стоп, влияниС Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π° Ρ‚Ρ€ΡƒΠ΄ΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΈ качСство ΠΆΠΈΠ·Π½ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Π΅ Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠΉ мСдицинской ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ. НаиболСС распространСнная опСрация Π² настоящСС врСмя ― Π°Ρ€Ρ‚Ρ€ΠΎΠ΄Π΅Π· ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΠΆΡ„Π°Π»Π°Π½Π³ΠΎΠ²ΠΎΠ³ΠΎ сустава Π² сочСтании с Weil-остСотомиСй. БпСцифичСскоС ослоТнСниС ― Ρ„Π»ΠΎΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ ΠΏΠ°Π»Π΅Ρ† ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΊΠ΅ смСТных ΠΏΠ°Π»ΡŒΡ†Π΅Π² ΠΈ Π³ΠΎΠ»ΠΎΠ²ΠΎΠΊ ΠΏΠ»ΡŽΡΠ½Π΅Π²Ρ‹Ρ… костСй. Одной ΠΈΠ· ΠΏΡ€ΠΈΡ‡ΠΈΠ½ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ослоТнСния являСтся Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΠ»ΡŽΡΠ½Π΅Ρ„Π°Π»Π°Π½Π³ΠΎΠ²ΠΎΠ³ΠΎ сустава, для ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ опСрация ΠΏΠΎ транспозиции сухоТилия Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ сгибатСля ΠΏΠ°Π»ΡŒΡ†Π° Π½Π° ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ Ρ„Π°Π»Π°Π½Π³Ρƒ. ИспользованиС Π΄Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ ограничСния, связанныС со слоТной Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΎΠΉ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ посрСдствСнным космСтичСским Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ. ΠŸΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ ΠΌΠΎΠ»ΠΎΡ‚ΠΊΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠΉ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΏΠ°Π»ΡŒΡ†Π΅Π² Π±Ρ‹Π» сдСлан Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Π²Π°ΠΆΠ½ΠΎΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ подошвСнной связки ΠΏΠ»ΡŽΡΠ½Π΅Ρ„Π°Π»Π°Π½Π³ΠΎΠ²ΠΎΠ³ΠΎ сустава, восстановлСниС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ стабилизации сустава, восстанавливаСт ΠΎΠΏΠΎΡ€Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ Π±ΠΈΠΎΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΡƒ стопы. ΠŸΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ лСчСния ΠΌΠΎΠ»ΠΎΡ‚ΠΊΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠΉ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ являСтся использованиС ΠΌΠ°Π»ΠΎΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ риск ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ослоТнСний, послСопСрационной ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚ΡƒΡ€Ρ‹ сустава, ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ врСмя провСдСния ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, сроки Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΈ, ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ послСопСрационный Π±ΠΎΠ»Π΅Π²ΠΎΠΉ синдром. Π’Π΅Ρ…Π½ΠΈΠΊΠ° минимальной ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ слоТнСС, Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ обучСния Ρ…ΠΈΡ€ΡƒΡ€Π³Π°, ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ контроля Π·Π° послСопСрационным Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°, ΠΈΠΌΠ΅Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ высокий ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ риск ΠΈΠ½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поврСТдСния анатомичСских структур. Π’Ρ‹Π±ΠΎΡ€ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° лСчСния основываСтся Π½Π° ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… особСнностях патологичСских ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ стопы ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°, тСхничСских возмоТностях ΠΈ ΠΎΠΏΡ‹Ρ‚Π΅ Ρ…ΠΈΡ€ΡƒΡ€Π³Π°. ΠŸΡ€ΠΈ Π²Ρ‹Π±ΠΎΡ€Π΅ Ρ‚Π°ΠΊΡ‚ΠΈΠΊΠΈ лСчСния Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Ρ‚ΡŒ ΡΠ»Π°ΡΡ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΠ»ΡŽΡΠ½Π΅Ρ„Π°Π»Π°Π½Π³ΠΎΠ²ΠΎΠ³ΠΎ сустава, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ ΡΠΎΠΏΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΎΡ‡Π½ΠΎΠΉ ΠΌΠ΅Ρ‚Π°Ρ‚Π°Ρ€Π·Π°Π»Π³ΠΈΠΈ; ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ пСрсонифицированныС трСбования ΠΈ оТидания ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ хирургичСского лСчСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΡ€ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ опросника AOFAS для Ρ€Π΅Π·Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ артропластики ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΠΆΡ„Π°Π»Π°Π½Π³ΠΎΠ²ΠΎΠ³ΠΎ сустава, ΡƒΠ»ΡƒΡ‡ΡˆΠΈΠ»ΠΈΡΡŒ Π² срСднСм Π² 2,4 Ρ€Π°Π·Π° (Π΄ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ 36,1 Π±Π°Π»Π»Π°, Π½Π° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΌ осмотрС 87,3 Π±Π°Π»Π»Π°). По Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π°Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠΉ шкалС (ВАШ) ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»Π°ΡΡŒ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Π² 4,8 Ρ€Π°Π·Π° (Π΄ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ 7,2, Π½Π° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΌ осмотрС 1,5). ΠŸΡ€ΠΈ восстановлСнии подошвСнной связки срСднСС ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ опроснику AOFAS Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΡ€ΠΎΠ² составило 1,8 Ρ€Π°Π·Π° (Π΄ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ 47,2, Π½Π° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΌ осмотрС 85,1). По шкалС ВАШ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡƒΠ»ΡƒΡ‡ΡˆΠΈΠ»ΠΈΡΡŒ Π² 5,7 Ρ€Π°Π·Π° (Π΄ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ 6,8, Π½Π° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΌ осмотрС 1,2). ΠŸΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ минимально ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² составила 87,3%. ΠŸΡ€ΠΈ пСрСсадкС сухоТилий послСопСрационный Π±Π°Π»Π» ΠΏΠΎ шкалС AOFAS составил 83,4. Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°Ρ… Π½Π΅ прСдставлСно, Π»ΠΈΠ±ΠΎ ΠΎΠ½ΠΈ прСдставлСны Π² нСдостаточном объСмС

    Measurement of RudsR_{\text{uds}} and RR between 3.12 and 3.72 GeV at the KEDR detector

    Get PDF
    Using the KEDR detector at the VEPP-4M e+eβˆ’e^+e^- collider, we have measured the values of RudsR_{\text{uds}} and RR at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than 3.3%3.3\% at most of energy points with a systematic uncertainty of about 2.1%2.1\%. At the moment it is the most accurate measurement of R(s)R(s) in this energy range

    Search for narrow resonances in e+ e- annihilation between 1.85 and 3.1 GeV with the KEDR Detector

    Full text link
    We report results of a search for narrow resonances in e+ e- annihilation at center-of-mass energies between 1.85 and 3.1 GeV performed with the KEDR detector at the VEPP-4M e+ e- collider. The upper limit on the leptonic width of a narrow resonance Gamma(R -> ee) Br(R -> hadr) < 120 eV has been obtained (at 90 % C.L.)

    Measurement of \Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-) and \Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)

    Get PDF
    The products of the electron width of the J/\psi meson and the branching fraction of its decays to the lepton pairs were measured using data from the KEDR experiment at the VEPP-4M electron-positron collider. The results are \Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-)=(0.3323\pm0.0064\pm0.0048) keV, \Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)=(0.3318\pm0.0052\pm0.0063) keV. Their combinations \Gamma_{ee}\times(\Gamma_{ee}+\Gamma_{\mu\mu})/\Gamma=(0.6641\pm0.0082\pm0.0100) keV, \Gamma_{ee}/\Gamma_{\mu\mu}=1.002\pm0.021\pm0.013 can be used to improve theaccuracy of the leptonic and full widths and test leptonic universality. Assuming e\mu universality and using the world average value of the lepton branching fraction, we also determine the leptonic \Gamma_{ll}=5.59\pm0.12 keV and total \Gamma=94.1\pm2.7 keV widths of the J/\psi meson.Comment: 7 pages, 6 figure

    Measurement of main parameters of the \psi(2S) resonance

    Get PDF
    A high-precision determination of the main parameters of the \psi(2S) resonance has been performed with the KEDR detector at the VEPP-4M e^{+}e^{-} collider in three scans of the \psi(2S) -- \psi(3770) energy range. Fitting the energy dependence of the multihadron cross section in the vicinity of the \psi(2S) we obtained the mass value M = 3686.114 +- 0.007 +- 0.011 ^{+0.002}_{-0.012} MeV and the product of the electron partial width by the branching fraction into hadrons \Gamma_{ee}*B_{h} = 2.233 +- 0.015 +- 0.037 +- 0.020 keV. The third error quoted is an estimate of the model dependence of the result due to assumptions on the interference effects in the cross section of the single-photon e^{+}e^{-} annihilation to hadrons explicitly considered in this work. Implicitly, the same assumptions were employed to obtain the charmonium leptonic width and the absolute branching fractions in many experiments. Using the result presented and the world average values of the electron and hadron branching fractions, one obtains the electron partial width and the total width of the \psi(2S): \Gamma_{ee} =2.282 +- 0.015 +- 0.038 +- 0.021 keV, \Gamma = 296 +- 2 +- 8 +- 3 keV. These results are consistent with and more than two times more precise than any of the previous experiments

    New precise determination of the \tau lepton mass at KEDR detector

    Full text link
    The status of the experiment on the precise Ο„\tau lepton mass measurement running at the VEPP-4M collider with the KEDR detector is reported. The mass value is evaluated from the Ο„+Ο„βˆ’\tau^+\tau^- cross section behaviour around the production threshold. The preliminary result based on 6.7 pbβˆ’1^{-1} of data is mΟ„=1776.80βˆ’0.23+0.25Β±0.15m_{\tau}=1776.80^{+0.25}_{-0.23} \pm 0.15 MeV. Using 0.8 pbβˆ’1^{-1} of data collected at the Οˆβ€²\psi' peak the preliminary result is also obtained: Ξ“eeBττ(Οˆβ€²)=7.2Β±2.1\Gamma_{ee}B_{\tau\tau}(\psi') = 7.2 \pm 2.1 eV.Comment: 6 pages, 8 figures; The 9th International Workshop on Tau-Lepton Physics, Tau0
    • …
    corecore