12 research outputs found
The crystal structure of compositionally homogeneous mixed ceria-zirconia oxides by high resolution X-ray and neutron diffraction methods
AbstractThe real/atomic structure of single phase homogeneous nanocrystalline Ce0.5Zr0.5O2±δoxides prepared by a modified Pechini route and Ni-loaded catalysts of methane dry reforming on their bases was studied by a combination of neutron diffraction, synchrotron X-ray diffraction, total X-ray scattering and X-ray absorption spectroscopy. The effects of sintering temperature and pretreatment in H2were elucidated. The structure of the mixed oxides corresponds to a tetragonal space group indicating a homogeneous distribution of Ce and Zr cations in the lattice. A pronounced disordering of the oxygen sublattice was revealed by neutron diffraction, supposedly due to incorporation of water into the structure when in contact with air promoted by the generation of anion vacancies in the lattice after reduction or calcination at high temperatures. However, such disordering has not resulted in any occupation of the oxygen interstitial positions in the bulk of the nanodomains.</jats:p
Delithiated states of layered cathode materials: doping and dispersion interaction effects on the structure
Here we present results of density functional theory (DFT) study of delithiated structures of layered LiNiO2 (LNO, Li12Ni12O24 model) cathode material and its doped analogue LiNi0.833Co0.083Al0.083O2 (N10C1A1, Li12Ni10CoAlO24 model). The paper is aimed at independent elucidation of doping and dispersion interaction effects on the structural stability of cathode materials studied. For this purpose, the LNO and N10C1A1 configurational spaces consisting of 87 and 4512 crystallographically independent configurations (obtained starting from 2×2×1 supercell of R-3m structure of LNO) are optimized within a number of DFT models. Based on a comparison of the calculated dependencies for the lattice parameters with the results of in situ neutron diffraction experiments, the most pronounced effect of cathode material stabilization is due to the dispersion interaction. In turn, the doping effect is found to affect cathode structure behavior at the latest stages of delithiation only
Delithiated states of layered cathode materials: doping and dispersion interaction effects on the structure
Here we present results of density functional theory (DFT) study of delithiated structures of layered LiNiO2 (LNO, Li12Ni12O24 model) cathode material and its doped analogue LiNi0.833Co0.083Al0.083O2 (N10C1A1, Li12Ni10CoAlO24 model). The paper is aimed at independent elucidation of doping and dispersion interaction effects on the structural stability of cathode materials studied. For this purpose, the LNO and N10C1A1 configurational spaces consisting of 87 and 4512 crystallographically independent configurations (obtained starting from 2×2×1 supercell of R-3m structure of LNO) are optimized within a number of DFT models. Based on a comparison of the calculated dependencies for the lattice parameters with the results of in situ neutron diffraction experiments, the most pronounced effect of cathode material stabilization is due to the dispersion interaction. In turn, the doping effect is found to affect cathode structure behavior at the latest stages of delithiation only
Interrelation among superstructural ordering, oxygen nonstoichiometry, and lattice strain of double perovskite Sr2FeMoO6–δ materials
Double perovskite ceramics Sr2FeMoO6–δ having different amount of antisite disordering and oxygen content are prepared by the solid-phase reaction method using SrFeO2.52(3) and SrMoO4 initial reagents. X-ray and neutron diffraction techniques are used to estimate a modification in the structural parameters as a function of oxygen content and B–site cationic ordering. Reduction of oxygen content leads to an increase in the unit cell volume, which is mainly associated with an elongation of c –parameter of the tetragonal unit cell and relative expansion of the chemical bonds between Mo/Fe ions and apical oxygen ions. Superstructural ordering observed for the compounds causes a decrease in the unit cell volume, which is accompanied by a reduction in the length of the Mo/Fe – O bonds, located in the basal plane of oxygen octahedra. This modification of the unit cell parameters notably affects a character of the exchange interactions formed between B–site ions thus allowing to control magnetic and transport properties of Sr2FeMoO6–δ ceramics. It is found that comprehensive approach allows a consistent understanding of much debated structural/magnetic behaviors of double perovskite Sr2FeMoO6–δ systems, opening a venue for designing reliable devices based on the half-metallic double perovskite materials
High-Temperature Behavior, Oxygen Transport Properties, and Electrochemical Performance of Cu-Substituted Nd<sub>1.6</sub>Ca<sub>0.4</sub>NiO<sub>4+</sub><sub>δ</sub> Electrode Materials
In this study, Nd1.6Ca0.4Ni1−yCuyO4+δ-based electrode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) are investigated. Materials of the series (y = 0–0.4) are obtained by pyrolysis of glycerol-nitrate compositions. The study of crystal structure and high-temperature stability in air and under low oxygen partial pressure atmospheres are performed using high-resolution neutron and in situ X-ray powder diffraction. All the samples under the study assume a structure with Bmab sp.gr. below 350 °C and with I4/mmm sp.gr. above 500 °C. A transition in the volume thermal expansion coefficient values from 7.8–9.3 to 9.1–12.0 × 10−6, K−1 is observed at approximately 400 °C in air and 500 °C in helium.The oxygen self-diffusion coefficient values, obtained using isotope exchange, monotonically decrease with the Cu content increasing, while concentration dependence of the charge carriers goes through the maximum at x = 0.2. The Nd1.6Ca0.4Ni0.8Cu0.2O4+δ electrode materialdemonstrates chemical compatibility and superior electrochemical performance in the symmetrical cells with Ce0.8Sm0.2O1.9, BaCe0.8Sm0.2O3−δ, BaCe0.8Gd0.19Cu0.1O3−δ and BaCe0.5Zr0.3Y0.1Yb0.1O3−δ solid electrolytes, potentially for application in IT-SOFCs
The crystal structure of compositionally homogeneous mixed ceria-zirconia oxides by high resolution X-ray and neutron diffraction methods
The real/atomic structure of single phase homogeneous nanocrystalline Ce0.5Zr0.5O2±δ oxides prepared by a modified Pechini route and Ni-loaded catalysts of methane dry reforming on their bases was studied by a combination of neutron diffraction, synchrotron X-ray diffraction, total X-ray scattering and X-ray absorption spectroscopy. The effects of sintering temperature and pretreatment in H2 were elucidated. The structure of the mixed oxides corresponds to a tetragonal space group indicating a homogeneous distribution of Ce and Zr cations in the lattice. A pronounced disordering of the oxygen sublattice was revealed by neutron diffraction, supposedly due to incorporation of water into the structure when in contact with air promoted by the generation of anion vacancies in the lattice after reduction or calcination at high temperatures. However, such disordering has not resulted in any occupation of the oxygen interstitial positions in the bulk of the nanodomains
Anelasticity of Phase Transitions and Magnetostriction in Fe-(27-28%)Ga Alloys
<div><p>Several aspects of anelastic behavior of Fe-(27-28%)Ga-Tb alloys are considered in this paper: (i) the phase transitions from a metastable to an equilibrium phase and phase transitions between equilibrium phases at higher temperatures in as cast alloys, (ii) the nature of corresponding three transient anelastic effects, (iii) the formation of an intrinsic composite microstructure with a different ratio between the bcc-derivative metastable and fcc-derivative equilibrium phases that have different magnetostriction and the effect of alloys doping by Tb to stabilize the metastable phase with high positive values of magnetostriction.</p></div