66 research outputs found

    Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure.

    Get PDF
    The main role of the human immune system is to eliminate cells presenting foreign antigens and abnormal patterns, while maintaining self-tolerance. However, when facing highly variable pathogens or antigens very similar to self-antigens, this system can fail in completely eliminating the anomalies, leading to the establishment of chronic pathologies. Prototypical examples of immune system defeat are cancer and Human Immunodeficiency Virus-1 (HIV-1) infection. In both conditions, the immune system is persistently exposed to antigens leading to systemic inflammation, lack of generation of long-term memory and exhaustion of effector cells. This triggers a negative feedback loop where effector cells are unable to resolve the pathology and cannot be replaced due to the lack of a pool of undifferentiated, self-renewing memory T cells. In addition, in an attempt to reduce tissue damage due to chronic inflammation, antigen presenting cells and myeloid components of the immune system activate systemic regulatory and tolerogenic programs. Beside these homologies shared between cancer and HIV-1 infection, the immune system can be shaped differently depending on the type and distribution of the eliciting antigens with ultimate consequences at the phenotypic and functional level of immune exhaustion. T cell differentiation, functionality, cytotoxic potential and proliferation reserve, immune-cell polarization, upregulation of negative regulators (immune checkpoint molecules) are indeed directly linked to the quantitative and qualitative differences in priming and recalling conditions. Better understanding of distinct mechanisms and functional consequences underlying disease-specific immune cell dysfunction will contribute to further improve and personalize immunotherapy. In the present review, we describe relevant players of immune cell exhaustion in cancer and HIV-1 infection, and enumerate the best-defined hallmarks of T cell dysfunction. Moreover, we highlight shared and divergent aspects of T cell exhaustion and T cell activation to the best of current knowledge

    PSMA-Specific CAR-Engineered T Cells Eradicate Disseminated Prostate Cancer in Preclinical Models.

    Get PDF
    Immunology-based interventions have been proposed as a promising curative chance to effectively attack postoperative minimal residual disease and distant metastatic localizations of prostate tumors. We developed a chimeric antigen receptor (CAR) construct targeting the human prostate-specific membrane antigen (hPSMA), based on a novel and high affinity specific mAb. As a transfer method, we employed last-generation lentiviral vectors (LV) carrying a synthetic bidirectional promoter capable of robust and coordinated expression of the CAR molecule, and a bioluminescent reporter gene to allow the tracking of transgenic T cells after in vivo adoptive transfer. Overall, we demonstrated that CAR-expressing LV efficiently transduced short-term activated PBMC, which in turn were readily stimulated to produce cytokines and to exert a relevant cytotoxic activity by engagement with PSMA+ prostate tumor cells. Upon in vivo transfer in tumor-bearing mice, CAR-transduced T cells were capable to completely eradicate a disseminated neoplasia in the majority of treated animals, thus supporting the translation of such approach in the clinical setting

    Differential down-modulation of HLA class I and II molecule expression on human tumor cell lines upon in vivo transfer

    Get PDF
    Previous evidence from our laboratory showed that Epstein–Barr virus–immortalized lymphoblastoid B cells undergo a prominent down-modulation of HLA-II molecule expression when injected intraperitoneally in SCID mice, while HLA-I remains almost unaffected. Since this phenomenon can alter the experimental outcome of therapeutic protocols of adoptive cell therapy, we decided to evaluate the behavior of MHC antigens in a panel of cell lines belonging to the B- and T-cell lineages, as well as in epithelial tumor cell lines. Cells were administered in mice either intraperitoneally or subcutaneously and recovered 4 days later for HLA molecule expression analysis. Collected data showed a highly heterogeneous in vivo behavior of the various cell lines, which could alternatively down-modulate, completely abrogate or maintain unchanged the expression of either MHC-I or MHC-II molecules. Moreover, the site of injection impacted differentially on these aspects. Although such phenomena still lack a comprehensive clarification, epigenetic mechanisms are likely to be involved as epigenetic drugs could partially counteract MHC down-modulation in vivo. Nonetheless, it has to be pointed out that careful attention must be paid to the assessment of therapeutic efficacy of translational protocols of adoptive immunotherapy, as modulation of MHC molecules on human target cells when transferred in a mouse environment could readily interfere with the desired and expected therapeutic effects

    Enhanced Transduction and Replication of RGD-Fiber Modified Adenovirus in Primary T Cells

    Get PDF
    Background: Adenoviruses are often used as vehicles to mediate gene delivery for therapeutic purposes, but their research scope in hematological cells remains limited due to a narrow choice of host cells that express the adenoviral receptor (CAR). T cells, which are attractive targets for gene therapy of numerous diseases, remain resistant to adenoviral infection because of the absence of CAR expression. Here, we demonstrate that this resistance can be overcome when murine or human T cells are transduced with an adenovirus incorporating the RGD-fiber modification (Ad-RGD). Methodology/Principal Finding: A luciferase-expressing replication-deficient Ad-RGD infected 3-fold higher number of activated primary T cells than an adenovirus lacking the RGD-fiber modification in vitro. Infection with replicationcompetent Ad-RGD virus also caused increased cell cycling, higher E1A copy number and enriched hexon antigen expression in both human and murine T cells. Transduction with oncolytic Ad-RGD also resulted in higher titers of progeny virus and enhanced the killing of T cells. In vivo, 35–45 % of splenic T cells were transduced by Ad-RGD. Conclusions: Collectively, our results prove that a fiber modified Ad-RGD successfully transduces and replicates in primary

    Sensitive and frequent identification of high avidity neo-epitope specific CD8 + T cells in immunotherapy-naive ovarian cancer.

    Get PDF
    Immunotherapy directed against private tumor neo-antigens derived from non-synonymous somatic mutations is a promising strategy of personalized cancer immunotherapy. However, feasibility in low mutational load tumor types remains unknown. Comprehensive and deep analysis of circulating and tumor-infiltrating lymphocytes (TILs) for neo-epitope specific CD8 <sup>+</sup> T cells has allowed prompt identification of oligoclonal and polyfunctional such cells from most immunotherapy-naive patients with advanced epithelial ovarian cancer studied. Neo-epitope recognition is discordant between circulating T cells and TILs, and is more likely to be found among TILs, which display higher functional avidity and unique TCRs with higher predicted affinity than their blood counterparts. Our results imply that identification of neo-epitope specific CD8 <sup>+</sup> T cells is achievable even in tumors with relatively low number of somatic mutations, and neo-epitope validation in TILs extends opportunities for mutanome-based personalized immunotherapies to such tumors

    The Promise of Personalized TCR-Based Cellular Immunotherapy for Cancer Patients.

    No full text
    Mutation-derived neoantigens are now established as attractive targets for cancer immunotherapy. The field of adoptive T cell transfer (ACT) therapy was significantly reshaped by tumor neoantigens and is now moving towards the genetic engineering of T cells with neoantigen-specific T cell receptors (TCRs). Yet, the identification of neoantigen-reactive TCRs remains challenging and the process needs to be adapted to clinical timelines. In addition, the state of recipient T cells for TCR transduction is critical and can affect TCR-ACT efficacy. Here we provide an overview of the main strategies for TCR-engineering, describe the selection and expansion of optimal carrier cells for TCR-ACT and discuss the next-generation methods for rapid identification of relevant TCR candidates for gene transfer therapy

    T-cell receptor gene transfer by lentiviral vectors in adoptive cell therapy

    No full text
    Adoptive cell therapy can be envisioned as a promising strategy for tumour immunotherapy. However, existing protocols of adoptive cell therapy still require optimisation as many factors, such as specificity, avidity, level of differentiation and amount of transferred T lymphocytes, can influence their immunocompetence and in vivo functionality. In particular, the need to reduce the in vitro expansion phase and to obtain large numbers of tumour-reactive T cells, as a favourable condition for cancer regression, make TCR gene transfer a potentially ideal tool to overcome the limits of adoptive cell therapy strategies. Here, the authors review the state-of-the-art and recent advances in TCR transfer with particular emphasis on lentiviral vector systems. Initial data from preclinical models and recent clinical trials encourage optimisation of a safe, simplified and stable transfer system. In this regard, HIV-based vectors are emerging as good alternative candidates over the most widely used oncoretroviral vectors due to their peculiar molecular features that fit the ideal conditions for donor T cell in vitro manipulation
    corecore