359 research outputs found

    Cosmic-ray transparency for a medium-latitude observatory

    Get PDF
    The access of cosmic-ray particles to a medium-latitude observatory is analysed fromresults coming fromthe numerical solution of the charged-particle motion in the geomagnetic field. Evaluations are performed mainly for the Lomnick´yˇSt´ıt neutron monitor location (LS: 2634 m a.s.l., geographic coordinates 49.20◦ N, 20.22◦ E), but some results for the Antarctic Laboratory for Cosmic Rays (LARC: 40 ma.s.l, 62.20◦ S and 301.04◦ E) are also given. Particular attention is paid to the variability of the magnetospheric screening appearing when the external magnetic field is added to the internal one

    Antiproton modulation in the Heliosphere and AMS-02 antiproton over proton ratio prediction

    Full text link
    We implemented a quasi time-dependent 2D stochastic model of solar modulation describing the transport of cosmic rays (CR) in the heliosphere. Our code can modulate the Local Interstellar Spectrum (LIS) of a generic charged particle (light cosmic ions and electrons), calculating the spectrum at 1AU. Several measurements of CR antiparticles have been performed. Here we focused our attention on the CR antiproton component and the antiproton over proton ratio. We show that our model, using the same heliospheric parameters for both particles, fit the observed anti-p/p ratio. We show a good agreement with BESS-97 and PAMELA data and make a prediction for the AMS-02 experiment

    Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary-Magnetic-Field Polar Correction

    Get PDF
    The cosmic rays differential intensity inside the heliosphere, for energy below 30 GeV/nuc, depends on solar activity and interplanetary magnetic field polarity. This variation, termed solar modulation, is described using a 2-D (radius and colatitude) Monte Carlo approach for solving the Parker transport equation that includes diffusion, convection, magnetic drift and adiabatic energy loss. Since the whole transport is strongly related to the interplanetary magnetic field (IMF) structure, a better understanding of his description is needed in order to reproduce the cosmic rays intensity at the Earth, as well as outside the ecliptic plane. In this work an interplanetary magnetic field model including the standard description on ecliptic region and a polar correction is presented. This treatment of the IMF, implemented in the HelMod Monte Carlo code (version 2.0), was used to determine the effects on the differential intensity of Proton at 1\,AU and allowed one to investigate how latitudinal gradients of proton intensities, observed in the inner heliosphere with the Ulysses spacecraft during 1995, can be affected by the modification of the IMF in the polar regions.Comment: accepted for publication inAdvances in Astronom

    Proton Modulation in the Heliosphere for Different Solar Conditions and Prediction for AMS-02

    Full text link
    Spectra of Galactic Cosmic Rays (GCRs) measured at the Earth are the combination of several processes: sources production and acceleration, propagation in the interstellar medium and propagation in the heliosphere. Inside the solar cavity the flux of GCRs is reduced due to the solar modulation, the interaction which they have with the interplanetary medium. We realized a 2D stochastic simulation of solar modulation to reproduce CR spectra at the Earth, and evaluated the importance in our results of the Local Interstellar Spectrum (LIS) model and its agreement with data at high energy. We show a good agreement between our model and the data taken by AMS-01 and BESS experiments during periods with different solar activity conditions. Furthermore we made a prediction for the flux which will be measured by AMS-02 experiment.Comment: Accepted for publication in the Proceedings of the ICATPP Conference on Cosmic Rays for Particle and Astroparticle Physics, Villa Olmo (Como, Italy), 7-8 October, 2010, to be published by World Scientific (Singapore

    The chloroplast RNA helicase ISE2 is required for multiple chloroplast RNA processing steps in Arabidopsis thaliana

    Get PDF
    INCREASED SIZE EXCLUSION LIMIT2 (ISE2) is a chloroplast-localized RNA helicase that is indispensable for proper plant development. Chloroplasts in leaves with reduced ISE2expression have previously been shown to exhibit reduced thylakoid contents and increased stromal volume, indicative of defective development. It has recently been reported that ISE2 is required for the splicing of group II introns from chloroplast transcripts. The current study extends these findings, and presents evidence for ISE2’s role in multiple aspects of chloroplast RNA processing beyond group II intron splicing. Loss of ISE2 from Arabidopsis thaliana leaves resulted in defects in C-to-U RNA editing, altered accumulation of chloroplast transcripts and chloroplast-encoded proteins, and defective processing of chloroplast ribosomal RNAs. Potential ISE2 substrates were identified by RNA immunoprecipitation followed by next-generation sequencing (RIP-seq), and the diversity of RNA species identified supports ISE2’s involvement in multiple aspects of chloroplast RNA metabolism. Comprehensive phylogenetic analyses revealed that ISE2 is a non-canonical Ski2-like RNA helicase that represents a separate sub-clade unique to green photosynthetic organisms, consistent with its function as an essential protein. Thus ISE2’s evolutionary conservation may be explained by its numerous roles in regulating chloroplast gene expression

    Suprathermal particle addition to solar wind pressure: possible influence on magnetospheric transmissivity of low energy cosmic rays?

    Full text link
    Energetic (suprathermal) solar particles, accelerated in the interplanetary medium, contribute to the solar wind pressure, in particular during high solar activity periods. We estimated the effect of the increase of solar wind pressure due to suprathermal particles on magnetospheric transmissivity of galactic cosmic rays in the case of one recent solar event

    Vaccinia virus immunomodulator A46 : a lipid and protein-binding scaffold for sequestering host TIR-domain proteins

    Get PDF
    TS received Austrian Science Fund (FWF) grants P24038, W1221 and W1258. GAB is a member of Max F. Perutz Laboratories and the Vienna International PostDoctoral Program (VIPS). TKS is a holder of Wellcome Trust grant 097831. IU has Spanish Ministry of Economy and Competitiveness grant BIO2013-49604-EXP.Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1-83) structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N-and C-terminal domains and SAXS analysis of full-length protein A46(1-240), we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88.Publisher PDFPeer reviewe

    Comparative Genome Analysis of Lactobacillus reuteri and Lactobacillus fermentum Reveal a Genomic Island for Reuterin and Cobalamin Production

    Get PDF
    Lactobacillus reuteri is a heterofermentative lactic acid bacterium that naturally inhabits the gut of humans and other animals. The probiotic effects of L. reuteri have been proposed to be largely associated with the production of the broad-spectrum antimicrobial compound reuterin during anaerobic metabolism of glycerol. We determined the complete genome sequences of the reuterin-producing L. reuteri JCM 1112T and its closely related species Lactobacillus fermentum IFO 3956. Both are in the same phylogenetic group within the genus Lactobacillus. Comparative genome analysis revealed that L. reuteri JCM 1112T has a unique cluster of 58 genes for the biosynthesis of reuterin and cobalamin (vitamin B12). The 58-gene cluster has a lower GC content and is apparently inserted into the conserved region, suggesting that the cluster represents a genomic island acquired from an anomalous source. Two-dimensional nuclear magnetic resonance (2D-NMR) with 13C3-glycerol demonstrated that L. reuteri JCM 1112T could convert glycerol to reuterin in vivo, substantiating the potential of L. reuteri JCM 1112T to produce reuterin in the intestine. Given that glycerol is shown to be naturally present in feces, the acquired ability to produce reuterin and cobalamin is an adaptive evolutionary response that likely contributes to the probiotic properties of L. reuteri
    corecore