17 research outputs found

    Diffusion Restriction Comparison between Gleason 4 Fused Glands and Cribriform Glands within Patient Using Whole-Mount Prostate Pathology as Ground Truth

    No full text
    The presence and extent of cribriform patterned Gleason 4 (G4) glands are associated with poor prognosis following radical prostatectomy. This study used whole-mount prostate histology and multiparametric magnetic resonance imaging (MP-MRI) to evaluate diffusion differences in G4 gland morphology. Fourty-eight patients underwent MP-MRI prior to prostatectomy, of whom 22 patients had regions of both G4 cribriform glands and G4 fused glands (G4CG and G4FG, respectively). After surgery, the prostate was sliced using custom, patient-specific 3D-printed slicing jigs modeled according to the T2-weighted MR image, processed, and embedded in paraffin. Whole-mount hematoxylin and eosin-stained slides were annotated by our urologic pathologist and digitally contoured to differentiate the lumen, epithelium, and stroma. Digitized slides were co-registered to the T2-weighted MRI scan. Linear mixed models were fitted to the MP-MRI data to consider the different hierarchical structures at the patient and slide level. We found that Gleason 4 cribriform glands were more diffusion-restricted than fused glands

    T2-Weighted MRI Radiomic Features Predict Prostate Cancer Presence and Eventual Biochemical Recurrence

    No full text
    Prostate cancer (PCa) is the most diagnosed non-cutaneous cancer in men. Despite therapies such as radical prostatectomy, which is considered curative, distant metastases may form, resulting in biochemical recurrence (BCR). This study used radiomic features calculated from multi-parametric magnetic resonance imaging (MP-MRI) to evaluate their ability to predict BCR and PCa presence. Data from a total of 279 patients, of which 46 experienced BCR, undergoing MP-MRI prior to surgery were assessed for this study. After surgery, the prostate was sectioned using patient-specific 3D-printed slicing jigs modeled using the T2-weighted imaging (T2WI). Sectioned tissue was stained, digitized, and annotated by a GU-fellowship trained pathologist for cancer presence. Digitized slides and annotations were co-registered to the T2WI and radiomic features were calculated across the whole prostate and cancerous lesions. A tree regression model was fitted to assess the ability of radiomic features to predict BCR, and a tree classification model was fitted with the same radiomic features to classify regions of cancer. We found that 10 radiomic features predicted eventual BCR with an AUC of 0.97 and classified cancer at an accuracy of 89.9%. This study showcases the application of a radiomic feature-based tool to screen for the presence of prostate cancer and assess patient prognosis, as determined by biochemical recurrence

    Radiomic Features of Multiparametric MRI Present Stable Associations with Analogous Histological Features in Patients with Brain Cancer

    No full text
    Magnetic resonance (MR)-derived radiomic features have shown substantial predictive utility in modeling different prognostic factors of glioblastoma and other brain cancers. However, the biological relationship underpinning these predictive models has been largely unstudied, and the generalizability of these models had been called into question. Here, we examine the localized relationship between MR-derived radiomic features and histology-derived “histomic” features using a data set of 16 patients with brain cancer. Tile-based radiomic features were collected on T1, post-contrast T1, FLAIR, and diffusion-weighted imaging (DWI)-derived apparent diffusion coefficient (ADC) images acquired before patient death, with analogous histomic features collected for autopsy samples coregistered to the magnetic resonance imaging. Features were collected for each original image, as well as a 3D wavelet decomposition of each image, resulting in 837 features per MR and histology image. Correlative analyses were used to assess the degree of association between radiomic–histomic pairs for each magnetic resonance imaging. The influence of several confounds was also assessed using linear mixed-effect models for the normalized radiomic–histomic distance, testing for main effects of different acquisition field strengths. Results as a whole were largely heterogeneous, but several features showed substantial associations with their histomic analogs, particularly those derived from the FLAIR and postcontrast T1W images. These features with the strongest association typically presented as stable across field strengths as well. These data suggest that a subset of radiomic features can consistently capture texture information on underlying tissue histology

    Cumulative Effects of Prior Concussion and Primary Sport Participation on Brain Morphometry in Collegiate Athletes: A Study From the NCAA–DoD CARE Consortium

    Get PDF
    Prior studies have reported long-term differences in brain structure (brain morphometry) as being associated with cumulative concussion and contact sport participation. There is emerging evidence to suggest that similar effects of prior concussion and contact sport participation on brain morphometry may be present in younger cohorts of active athletes. We investigated the relationship between prior concussion and primary sport participation with subcortical and cortical structures in active collegiate contact sport and non-contact sport athletes. Contact sport athletes (CS; N = 190) and matched non-contact sport athletes (NCS; N = 95) completed baseline clinical testing and participated in up to four serial neuroimaging sessions across a 6-months period. Subcortical and cortical structural metrics were derived using FreeSurfer. Linear mixed-effects (LME) models examined the effects of years of primary sport participation and prior concussion (0, 1+) on brain structure and baseline clinical variables. Athletes with prior concussion across both groups reported significantly more baseline concussion and psychological symptoms (all ps < 0.05). The relationship between years of primary sport participation and thalamic volume differed between CS and NCS (p = 0.015), driven by a significant inverse association between primary years of participation and thalamic volume in CS (p = 0.007). Additional analyses limited to CS alone showed that the relationship between years of primary sport participation and dorsal striatal volume was moderated by concussion history (p = 0.042). Finally, CS with prior concussion had larger hippocampal volumes than CS without prior concussion (p = 0.015). Years of contact sport exposure and prior concussion(s) are associated with differences in subcortical volumes in young-adult, active collegiate athletes, consistent with prior literature in retired, primarily symptomatic contact sport athletes. Longitudinal follow-up studies in these athletes are needed to determine clinical significance of current findings

    Accurate segmentation of prostate cancer histomorphometric features using a weakly supervised convolutional neural network.

    No full text
    Purpose: Prostate cancer primarily arises from the glandular epithelium. Histomophometric techniques have been used to assess the glandular epithelium in automated detection and classification pipelines; however, they are often rigid in their implementation, and their performance suffers on large datasets where variation in staining, imaging, and preparation is difficult to control. The purpose of this study is to quantify performance of a pixelwise segmentation algorithm that was trained using different combinations of weak and strong stroma, epithelium, and lumen labels in a prostate histology dataset. Approach: We have combined weakly labeled datasets generated using simple morphometric techniques and high-quality labeled datasets from human observers in prostate biopsy cores to train a convolutional neural network for use in whole mount prostate labeling pipelines. With trained networks, we characterize pixelwise segmentation of stromal, epithelium, and lumen (SEL) regions on both biopsy core and whole-mount H&amp;E-stained tissue. Results: We provide evidence that by simply training a deep learning algorithm on weakly labeled data generated from rigid morphometric methods, we can improve the robustness of classification over the morphometric methods used to train the classifier. Conclusions: We show that not only does our approach of combining weak and strong labels for training the CNN improve qualitative SEL labeling within tissue but also the deep learning generated labels are superior for cancer classification in a higher-order algorithm over the morphometrically derived labels it was trained on

    Radio-pathomic mapping model generated using annotations from five pathologists reliably distinguishes high-grade prostate cancer.

    No full text
    Purpose: Our study predictively maps epithelium density in magnetic resonance imaging (MRI) space while varying the ground truth labels provided by five pathologists to quantify the downstream effects of interobserver variability. Approach: Clinical imaging and postsurgical tissue from 48 recruited prospective patients were used in our study. Tissue was sliced to match the MRI orientation and whole-mount slides were stained and digitized. Data from 28 patients ( n = 33 slides) were sent to five pathologists to be annotated. Slides from the remaining 20 patients ( n = 123 slides) were annotated by one of the five pathologists. Interpathologist variability was measured using Krippendorffs alpha. Pathologist-specific radiopathomic mapping models were trained using a partial least-squares regression using MRI values to predict epithelium density, a known marker for disease severity. An analysis of variance characterized intermodel means difference in epithelium density. A consensus model was created and evaluated using a receiver operator characteristic classifying high grade versus low grade and benign, and was statistically compared to apparent diffusion coefficient (ADC). Results: Interobserver variability ranged from low to acceptable agreement (0.31 to 0.69). There was a statistically significant difference in mean predicted epithelium density values ( p &lt; 0.001 ) between the five models. The consensus model outperformed ADC (areas under the curve = 0.80 and 0.71, respectively, p &lt; 0.05 ). Conclusion: We demonstrate that radiopathomic maps of epithelium density are sensitive to the pathologist annotating the dataset; however, it is unclear if these differences are clinically significant. The consensus model produced the best maps, matched the performance of the best individual model, and outperformed ADC
    corecore