69 research outputs found

    Short-range order and electronic properties of epitaxial graphene

    Get PDF
    One of the most rapidly developing areas of modern materials science is the study of graphene and materials on its basis. The experimental investigations have revealed different types of defects on the surface of graphene that form the ordered structures of atomic configurations. In the present work, the value of short-range order parameter for different configurations of foreign atoms in a graphene layer was calculated. The effect of various factors on the density of electronic states and electrical resistance in graphene was also investigated. The type of the ordering of foreign atoms in graphene rather than the concentration of impurities, was shown to be responsible for the change in the conductivity of graphene

    Desargues maps and the Hirota-Miwa equation

    Full text link
    We study the Desargues maps \phi:\ZZ^N\to\PP^M, which generate lattices whose points are collinear with all their nearest (in positive directions) neighbours. The multidimensional compatibility of the map is equivalent to the Desargues theorem and its higher-dimensional generalizations. The nonlinear counterpart of the map is the non-commutative (in general) Hirota--Miwa system. In the commutative case of the complex field we apply the nonlocal ˉ\bar\partial-dressing method to construct Desargues maps and the corresponding solutions of the equation. In particular, we identify the Fredholm determinant of the integral equation inverting the nonlocal ˉ\bar\partial-dressing problem with the τ\tau-function. Finally, we establish equivalence between the Desargues maps and quadrilateral lattices provided we take into consideration also their Laplace transforms.Comment: 17 pages, 5 figures; v2 - presentation improve

    Hyperdeterminants as integrable discrete systems

    Full text link
    We give the basic definitions and some theoretical results about hyperdeterminants, introduced by A. Cayley in 1845. We prove integrability (understood as 4d-consistency) of a nonlinear difference equation defined by the 2x2x2-hyperdeterminant. This result gives rise to the following hypothesis: the difference equations defined by hyperdeterminants of any size are integrable. We show that this hypothesis already fails in the case of the 2x2x2x2-hyperdeterminant.Comment: Standard LaTeX, 11 pages. v2: corrected a small misprint in the abstrac

    Solutions of Adler's lattice equation associated with 2-cycles of the Backlund transformation

    Full text link
    The BT of Adler's lattice equation is inherent in the equation itself by virtue of its multidimensional consistency. We refer to a solution of the equation that is related to itself by the composition of two BTs (with different Backlund parameters) as a 2-cycle of the BT. In this article we will show that such solutions are associated with a commuting one-parameter family of rank-2 (i.e., 2-variable), 2-valued mappings. We will construct the explicit solution of the mappings within this family and hence give the solutions of Adler's equation that are 2-cycles of the BT.Comment: 10 pages, contribution to the NEEDS 2007 proceeding

    Gross-Neveu Models, Nonlinear Dirac Equations, Surfaces and Strings

    Full text link
    Recent studies of the thermodynamic phase diagrams of the Gross-Neveu model (GN2), and its chiral cousin, the NJL2 model, have shown that there are phases with inhomogeneous crystalline condensates. These (static) condensates can be found analytically because the relevant Hartree-Fock and gap equations can be reduced to the nonlinear Schr\"odinger equation, whose deformations are governed by the mKdV and AKNS integrable hierarchies, respectively. Recently, Thies et al have shown that time-dependent Hartree-Fock solutions describing baryon scattering in the massless GN2 model satisfy the Sinh-Gordon equation, and can be mapped directly to classical string solutions in AdS3. Here we propose a geometric perspective for this result, based on the generalized Weierstrass spinor representation for the embedding of 2d surfaces into 3d spaces, which explains why these well-known integrable systems underlie these various Gross-Neveu gap equations, and why there should be a connection to classical string theory solutions. This geometric viewpoint may be useful for higher dimensional models, where the relevant integrable hierarchies include the Davey-Stewartson and Novikov-Veselov systems.Comment: 27 pages, 1 figur

    Towards the theory of integrable hyperbolic equations of third order

    Full text link
    The examples are considered of integrable hyperbolic equations of third order with two independent variables. In particular, an equation is found which admits as evolutionary symmetries the Krichever--Novikov equation and the modified Landau--Lifshitz system. The problem of choice of dynamical variables for the hyperbolic equations is discussed.Comment: 22
    corecore