498 research outputs found

    Disposable solid-contact ion-selective electrodes for environmental monitoring of lead with ppb

    Get PDF
    Solid-contact Pb2+-selective-electrodes and solid contact reference electrodes suitable for use as disposable sensing devices for environmental monitoring of lead have been prepared on screen-printed substrates. Accurate control over the fabrication procedures leads to excellent reproducibility of their calibration characteristics such as slope, offset and limit of detection. In particular, the limit of detection in the nanomolar range opens the possibility of their use for trace analysis of Pb2+ in environmental water samples. Significantly, the potentiometric measurements correlate well with data determined using inductively coupled plasma mass spectrometry (ICP-MS) in a number of real samples taken from local rivers. Ways in which these sensors might be employed in autonomous platforms for monitoring water quality in-situ are discussed. The possibility of including arrays of virtually identical sensors is highlighted as a possible route to achieve long-term deployments

    Collective bargaining in Finland: legitimacy through deliberation?

    Full text link
    "Die Inklusion wirtschaftlicher Interessengruppen in den politischen Prozess stellt die reprĂ€sentative Demokratie vor das Problem, dass das Parlament bei wichtigen sozialen und ökonomischen Entscheidungen ĂŒbergangen wird. Ausgangspunkt dieses Beitrags ist die Frage, ob Arrangements dieser Art legitimiert werden können als eine Form deliberativer Demokratie, in der Entscheidungen getroffen werden nach abwĂ€gender Beratung zwischen denen, die davon letztlich betroffen sind. Der empirische Teil bezieht sich auf die finnische Gesetzgebung zur Arbeitszeit in den 1990er Jahren. Die Fallstudie zeigt, dass die ReprĂ€sentanten der Interessengruppen bei der Kontroverse ĂŒber die Arbeitszeitfrage von anfĂ€nglicher Bekundung zum vernĂŒnftigen Kompromiss zu verhĂ€rteten Positionen wechselten. Eine fĂŒr die deliberative Demokratie ideale Annahme, dass die Beteiligten nach Beratung zu einem gemeinsamen Ergebnis fĂ€nden, blieb in diesem Fall unbestĂ€tigt. Wichtigste Schlussfolgerung ist, dass selbst wenn die Einbeziehung der ökonomischen Interessengruppen in den Politikprozess nach Kriterien der wirtschaftlichen Wohlfahrt und des sozialen Friedens legitimiert werden kann, bleibt es fraglich, ob ihre Inklusion mit den Kriterien der reprĂ€sentativen oder der deliberativen Demokratie ĂŒbereinstimmen." (Autorenreferat)"The inclusion of main economic interest groups in policy making poses a distinct dilemma for representative democracy, because the parliament often becomes effectively bypassed in the making of important social and economic policies. The aim of this article is to discuss whether the arrangements instead could be legitimised as a form of deliberative democracy, where decisions are made through deliberation and reasoning among those whom decisions ultimately concern. The empirical part of the article is represented by an evaluation of the development of the Finnish working hours legislation in the 1990s. The case study shows that after the representatives from the main economic interest groups started deliberating the working hours issue in detail, deliberation moved from initial expressions of the need for reasoned compromise to entrenched positions. A deliberative democratic ideal, where participants should agree on a single course of action as a result of deliberation did not materialise in this case. The main conclusion is that even if the inclusion of main economic interest groups in policy making may be legitimised by outcomes in terms of economic well-being, labour market peace etc., the problem from a democratic point of view is that the inclusion does not comply with either representative or deliberative democratic criteria." (author's abstract

    Miniature, all-solid-state ion-selective sensor as a detector in autonomous, deployable sensing device

    Get PDF
    Lowering of the detection limit of ion-selective electrodes (ISEs) as well as their simple construction, low production cost and low power requirements make ISEs an ideal candidate for detector systems that can be integrated into autonomous, deployable sensing devices. Routine analysis and early warning systems are applications that first spring to mind, however great added value can be obtained by integration of many such devices into a wireless sensing network. In this work we describe our work towards the miniaturization of ISEs and their integration of with all-solid-state reference electrode into an all-solid-state sensor with a view of integration in autonomous, deployable sensing device. This work has two avenues: 1) development of a platform that can house all-solid-state ISEs and reference electrodes and 2) development of electronic circuitry for data acquisition and wireless transmission of the data. The latter utilizes novel, in-house made motes (a node in a wireless sensor network that is capable of performing some processing, gathering sensory information and communicating with other connected nodes in the network) that operate at lower frequency and therefore consume lower power then other, commercially available ones. In addition, they are easier to program which bridges the gap of communication between chemists and computer scientists. Intensification of the work in producing all-solid-state reference electrodes has enabled us to work on development of a platform that houses all-solid-state ISEs and reference electrode. We will here describe our progress in this avenue of our research

    Integration of miniature, ultrasensitive chemical sensors in microfluidic devices

    Get PDF
    Simple construction, good detection limit1, very low power demand, and simple experimental setup coupled with miniaturization opportunities arising from solid-state format makes ISEs an excellent prospect for integration in autonomous sensing devices and ultimately their integration in large wireless chemo-sensing networks.2,3 Microfluidics, also known as “lab-on-a-chip” is an emerging technology that is changing the future of instrument design. Microfluidics enables small scale fluid control and analysis, allowing developing smaller, more cost-effective, and more powerful systems.4,5,6 We are working on development of miniature devices featuring sensitive yet simple sensors that could enable rapid access to important environmental information from in-situ deployed sensors, and thereby facilitate timely action to minimize the adverse impact of emerging incidents. Our work involves integration of ultra-sensitive yet simple chemical sensors into a microfluidic device that has integrated wireless communications capabilities. Our ultimate objective is to develop a microfluidic chip that will incorporate polymer-based lead-selective solid-state electrodes. We will test the series of developed chips for the best design to accommodate these sensors. Initially, we are targeting lead-selective sensors and their application to the monitoring of drinking and natural water quality. Our ultimate vision is the development of a microfluidic-based platform with fully integrated screen-printed solid-state ISEs, and the associated reference electrode, which will be suitable for use as a chemo-sensing component in a widely distributed wireless sensor network (WSN) for monitoring the quality of a fresh water system. A key challenge in the realization of this vision is to build in advanced system diagnostics, and particular, sensor status tests using simple electronic signals, in a manner similar to those used in physical transducers.7 In this way, it may be possible to assist in distinguishing sensor malfunction or signal artifacts from real events, even in relatively simple, low cost platforms

    Integration of a sensor system into microfluidic chips

    Get PDF
    There have been considerable developments in the field of potentiometric sensors in recent years mainly with respect to lowering detection limits and making sensors smaller, solid-state, robust and less expensive.[1, 2] In potentiometric measurements two electrodes are needed, an indicator or ion-selective electrode (ISE) and a reference electrode. However, recent progress in the design and characteristics of the indicator electrodes cannot be exploited without similar progress in the design of the reference electrodes. In this paper we present development of chips with fully integrated solid-contact reference (SC-RE) and ion-selective (SC-ISEs) electrodes. In these electrodes, a conducting polymer (CP) (poly(3,4-ethylenedioxythiophene)) is used as the solid contact ion-to-electron transducer[3]. The conducting polymer is deposited using galvanostatic electropolymerization.[4, 5] The ability to produce reliable miniaturized reference electrodes, has given us the opportunity to develop several prototype versions of miniature, solid-contact sensor systems (i.e. with fully integrated ion-selective and reference electrodes) that can be further integrated into microfluidic platforms. We have prepared microchips using different designs to test for the best accommodation of the sensors and to optimise the sensor-chip platform characteristics. Our initial goal is to prepare Pb-ISEs suitable for use as a chemo-sensing component in a widely distributed wireless sensor network (WSN) for monitoring the quality of a fresh water system, together with advanced diagnostics to evaluate the on-going functionality of the sensors using simple electronic signals.[5, 6

    Electrochemical impedance spectroscopy as a tool for probing the functionality of ion-selective membranes

    Get PDF
    Recent success in lowering of the detection limit of ion-selective electrodes (ISEs) to part-perbillion levels have opened up the possibility for their application in environmental analysis. Its simplicity, low cost, and low power requirement coupled with excellent selectivity and sensitivity make ISEs excellent detecting system in autonomous and deployable sensing devices for routine analysis and as early warning systems. However, the necessity for calibration of detecting systems implies the use of sometimes complicated and costly systems for calibration solution and waste handling, pumps and data acquisition including the labour for system maintenance. Reducing the need for sensor calibration (or its complete elimination) would not only simplify sensing devices and reduce their costs but would allow integration of chemical sensors into the emerging area of wireless sensing networks (WSNs). It is envisioned that this integration will bring new dimensions into chemical sensing and bring benefits in many aspects of human lives. Here, we describe our attempts to address the issue of reducing the need for sensor calibration. The functionality of a typical physical transducer is probed using electrical signals testing its resistance, impedance, conductance etc. We employ a similar strategy and apply relatively simple AC signals to an ion-selective membrane in order to probe its functionality after it has been subjected to conditions that simulate in-situ long-term deployments. For example, we observe the impedance spectra of membranes that have been physically damaged, biofouled and/or have components leached out. Comparing this information with the sensor's potentiometric behaviour, we can draw conclusions regarding the functionality of the devices and their suitability to continue serving as a reliable detectors, for example, in remote locations

    Ion-selective electrodes in real-life applications: can we reduce or even eliminate the need for calibration?

    Get PDF
    The recent success in lowering of the low detection limit of ion-selective electrodes (ISEs) has opened up new application areas (most notably environmental analysis). The new possibilities have intensified issues that weren’t critical in other application fields. In particular, the potential of ISEs to be integrated as detector systems in autonomous, deployable devices for environmental analysis have opened the question of the measure of uncertainty in prediction of unknown concentration based on calibration as well as the necessity of reduction or even elimination of calibration itself. Here we point out the need for the maximal efficiency of using obtained results based on utilization of solid-contact ISEs for heavy metal analysis in soil. We advocate altering the current definition of detection limit and using signal-to-noise ratio as suggested earlier by Bakker and Pretsch.[1] We also suggest new method for jointly estimating the calibration curve and the unknown concentrations using all the data. This method is in statistical analysis called Bayesian analysis. It allows more accurate prediction of unknown concentration, especially near and even below the detection limit. Furthermore, it allows using of multiple sensors (without disregarding poor performing sensors) which will allow further tightening of the prediction intervals. Finally, we will present initial work on developing “calibrationless” chemical sensors where we use ISEs as model system. We are developing tests that will enable us to understand whether the surface or the bulk of the membrane has been altered (i.e. due to biofouling or poisoning of the electrode surface) thus avoiding the need to re-calibrate the sensors. [1] Bakker E. Pretsch E; Trends Anal. Chem.; 2005, 24, (3), 19

    The Water Uptake of Plasticized Poly(vinyl chloride) Solid‐Contact Calcium‐Selective Electrodes

    Full text link
    A hyphenated method based on FTIR‐ATR and electrochemical impedance spectroscopy has been applied to simultaneously measure the water uptake, changes in the bulk resistance and potential of plasticized poly(vinyl chloride) (PVC) based Ca 2+ ‐selective coated‐wire (CaCWE) and solid‐contact electrodes (CaSCISEs). Most of the water uptake of the ion‐selective membranes (ISMs) used in both electrode types took place within the first 9 h in 10 −3  M CaCl 2 showing good correlation with the stabilization of the individual electrode potentials. The bulk resistance of the ISMs of the CaCWEs and the CaSCISEs with poly(3‐octylthiophene) (POT) as the solid‐contact (SC) increased most during the first 18 h in 10 −3  M CaCl 2 . The increase in the resistance was found to be related to the exchange of K + for Ca 2+ in the ISM and the formation of the Ca 2+ ‐ionophore (ETH 5234) complex having a lower diffusivity than the free K + ions. In contrary to previously published results on silicone rubber based SCISEs and poly(methyl methacrylate):poly( n ‐decyl methacrylate) membranes containing POT, the plasticized PVC‐based CaSCISEs with POT as the SC had a higher water uptake than the CaCWEs. The CaSCISEs had a detection limit of 2×10 −8  M Ca 2+ and a good potential reproducibility of 148.9±1.0 mV in 10 −4  M CaCl 2 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86920/1/2156_ftp.pd

    Development of miniature all-solid-state potentiometric sensing system

    Get PDF
    A procedure for the development of a pen-like, multi-electrode potentiometric sensing platform is described. The platform comprises a seven-in-one electrode incorporating all-solid-state ion-selective and reference electrodes based on the conductive polymer (poly(3,4-ethylenedioxythiophene) (PEDOT)) as an intermediate layer between the contacts and ion-selective membranes. The ion-selective electrodes are based on traditional, ionophore-based membranes, while the reference electrode is based on a polymer membrane doped with the lipophilic salt tetrabutyl ammonium tetrabutyl borate (TBA-TBB). The electrodes, controlled with a multichannel detector system, were used for simultaneous determination of the concentration of Pb2+ and pH in environmental water samples. The results obtained using pH-selective electrodes were compared with data obtained using a conventional pH meter and the average percent difference was 0.3%. Furthermore, the sensing system was successfully used for lead-speciation analysis in environmental water samples

    Analytisk kemi – nĂ„gra reflektioner

    Get PDF
    Analytical chemistry is an interdisciplinary field of science related to many practical applications, such as clinical diagnostics, environmental monitoring and industrial process analysis. Over the last 50 years, chemical analytics has evolved from centralized laboratory measurements towards on-line and distributed analysis, including wearable chemical sensors for personal health monitoring. In this article I wish to reflect upon these developments in analytical chemistry, illustrated by examples from my own research. The text provides a glimpse of analytical chemistry from my personal perspective
    • 

    corecore