128 research outputs found

    Improving drug loading of mucosal solvent cast films using a combination of hydrophilic polymers with amoxicillin and paracetamol as model drugs

    Get PDF
    Solvent castmucosal films with improved drug loading have been developed by combining carboxymethyl cellulose (CMC), sodium alginate (SA), and carrageenan (CAR) using paracetamol and amoxicillin as model drugs and glycerol (GLY) as plasticizer. Films were characterized using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), folding resilience, swelling capacity, mucoadhesivity, and drug dissolution studies. SA, CMC, and GLY (5 : 3 : 6) films showed maximum amoxicillin loading of 26.3% whilst CAR, CMC, and GLY (1 : 2 : 3) films had a maximum paracetamol loading of 40%. XRPD analysis showed different physical forms of the drugs depending on the amount loaded. Films containing 29.4% paracetamol and 26.3% amoxicillin showed molecular dispersion of the drugs while excess paracetamol was observed on the filmsurface when themaximum 40% was loaded. Work of adhesion was similar for blank films with slightly higher cohesiveness for CAR and CMC based films, but the differences were significant between paracetamol and amoxicillin containing films. The stickiness and cohesiveness for drug loaded films were generally similar with no significant differences. The maximum percentage cumulative drug release was 84.65% and 70.59% for paracetamol and amoxicillin, respectively, with anomalous case two transport mechanism involving both drug diffusion and polymer erosion

    Polysaccharide based formulations for mucosal drug delivery: A review

    Get PDF
    There has been increased interest in novel drug delivery systems to be administered via mucosal routes as an alternative to the currently used traditional routes such as parenteral (injections) and oral routes of administration. This is due to the several advantages they offer including avoiding first pass metabolism in the liver for oral administration and local activity which avoids the need for high systemic doses. To achieve the foregoing objectives, bioadhesive vehicles are required that ensure prolonged residence time to achieve systemic bioavailability via substantial drug absorption or significant drug concentration for local action. The drug delivery system is also required to be non-deleterious to the site of application and be well tolerated by vulnerable groups such as paediatric and geriatric patients. These essential characteristics are mainly satisfied by naturally occurring polymers, including polysaccharide based polymers which have the advantage of biocompatibility, biodegradability and therefore safety. This review discusses various bioadhesive polymers of polysaccharide origin formulated into a variety of dosage forms for drug delivery via the body’s mucosal (moist) surfaces including ocular, oral (buccal and sublingual), nasal, gastrointestinal and vaginal mucosa, as well as moist wound sites. The anatomy and / or physiology of each site, coupled with the unique challenges each poses, the strategies employed for ensuring therapeutic efficacy, as well as the current state of the art will also be covered

    Functional physico-chemical, ex vivo permeation and cell viability characterization of omeprazole loaded buccal films for pediatric drug delivery

    Get PDF
    Buccal films were prepared from aqueous and ethanolic Metolose gels using the solvent casting approach (40 °C). The hydration (PBS and simulated saliva), mucoadhesion, physical stability (20 °C, 40 °C), in vitro drug (omeprazole) dissolution (PBS and simulated saliva), ex vivo permeation (pig buccal mucosa) in the presence of simulated saliva, ex vivo bioadhesion and cell viability using MTT of films were investigated. Hydration and mucoadhesion results showed that swelling capacity and adhesion was higher in the presence of PBS than simulated saliva (SS) due to differences in ionic strength. Omeprazole was more stable at 20 °C than 40 °C whilst omeprazole release reached a plateau within 1 h and faster in PBS than in SS. Fitting release data to kinetic models showed that Korsmeyer–Peppas equation best fit the dissolution data. Drug release in PBS was best described by zero order via non-Fickian diffusion but followed super case II transport in SS attributed to drug diffusion and polymer erosion. The amount of omeprazole permeating over 2 h was 275 ug/cm2 whilst the formulations and starting materials showed cell viability values greater than 95%, confirming their safety for potential use in paediatric buccal delivery

    Achieving Organizational Agility through Application Programming Interfaces: The Effect of Dynamic Capability and Institutional Forces

    Get PDF
    Digital platforms have contributed enormously to the success of businesses. Whereas the Information Systems literature is dominated by digital platform research, less is mentioned about Application Programming Interfaces (APIs), the fiber that connects digital platforms. Critically, the normative literature seems to be silent on how developing economy firms achieve agility through API integration. In addressing these research gaps, this research seeks first to investigate how developing economy firms achieve agility when they integrate APIs. Furthermore, the study aims to understand which forms of institutional forces enable or hinder the API integration process. Philosophically, this study will be approached from a critical realist perspective and will adopt a qualitative method of inquiry

    Advanced multi-targeted composite biomaterial dressing for pain and infection control in chronic leg ulcers

    Get PDF
    This study aimed to develop advanced biomaterial polysaccharide based dressings to manage pain associated with infected chronic leg ulcers in older adults. Composite carrageenan (CARR) and hyaluronic acid (HA) dressings loaded with lidocaine (LID) and AgNPs were formulated as freeze-dried wafers and functionally characterized for porous microstructure (morphology), mechanical strength, moisture handling properties, swelling, adhesion and lidocaine release. Antimicrobial activity of AgNPs was evaluated (turbidity assay) against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus whilst cell viability studies (MTT) was performed on normal adult human primary epidermal keratinocyte cells. The wafers were soft, flexible and elegant in appearance. HA affected the wafer structure by increasing the resistance to compression but still possessed a balance between toughness and flexibility to withstand normal stresses and prevent damage to newly formed skin tissue respectively. Water uptake was influenced by HA, whilst equilibrium water content and LID release were similar for all the formulations, showing controlled release up to 6 h. AgNPs loaded CARR/HA wafers were effective in inhibiting the growth of both Gram positive and Gram negative bacteria. MTT assay showed evidence that the AgNPs/ LID loaded wafers did not interfere with cell viability and growth. CARR/HA wafers seem to be a promising system to simultaneously deliver LID and AgNPs, directly to infected chronic leg ulcers

    Antimicrobial Dressings for Improving Wound Healing

    Get PDF
    Wound healing occurs by a series of interrelated molecular events which work together to restore tissue integrity and cellular function. These physiological events occur smoothly in normal healthy individual and/or under normal conditions. However, in certain cases, these molecular events are retarded resulting in hard-to-heal or chronic wounds arising from several factors such as poor venous return, underlying physiological or metabolic conditions such as diabetes as well as external factors such as poor nutrition. In most cases, such wounds are infected and infection also presents as another complicating phenomenon which triggers inflammatory reactions, therefore delaying wound healing. There has therefore been recent interests and significant efforts in preventing and actively treating wound infections by directly targeting infection causative agents through direct application of antimicrobial agents either alone or loaded into dressings (medicated). These have the advantage of overcoming challenges such as poor circulation in diabetic and leg ulcers when administered systemically and also require lower amounts to be applied compared to that required via oral or iv administration. This chapter will review and evaluate various antimicrobial agents used to target infected wounds, the means of delivery, and current state of the art, including commercially available dressings. Data sources will include mainly peer-reviewed literature, clinical trials and reports, patents as well as government reports where available

    Conversion of sustained release omeprazole loaded buccal films into fast dissolving strips using supercritical carbon dioxide (scCO2) processing, for potential paediatric drug delivery

    Get PDF
    This study involves the development of thin oral solvent cast films for the potential delivery of the proton pump inhibitor, omeprazole (OME) via the buccal mucosa for paediatric patients. OME containing films were prepared from ethanolic gels (1% w/w) of metolose (MET) with polyethylene glycol (PEG 400) (0.5% w/w) as plasticiser, and L-arginine (l-arg) (0.2% w/w) as a stabilizer and dried in an oven at 40 °C. The blank and drug loaded films were divided into two groups, one group was subjected to supercritical carbon dioxide (scCO2) treatment and the other group untreated. The untreated and scCO2 treated films were then characterised using differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, hydration (swelling), mucoadhesion and in vitro drug dissolution studies. Treatment of the solvent cast films with scCO2 caused significant changes to the functional and physical properties of the MET films. The original drug loaded MET films showed a sustained release of OME (1 h), whereas scCO2 treatment of the formulations resulted in fast dissolving films with > 90% drug release within 15 min

    Novel mucoadhesive wafers for treating local vaginal infections

    Get PDF
    Current vaginal formulations, such as gels and pessaries, have limitations, including poor retention. Therefore, the use of mucoadhesive formulations that adhere to the vaginal wall would allow prolonged retention and controlled drug release while reducing the required dose and the potential toxicity associated with high drug loading. The aim of the current research was to develop, characterize, and optimize freeze-dried wafers loaded with metronidazole (MTz) to treat vaginal bacterial infections. Blank (BLK) composite wafers comprising carrageenan (CARR) and sodium alginate (SA) were initially formulated; however, due to poor physico-chemical properties, Carbopol (CARB), hydroxypropylmethylcellulose (HPMC), and polyethylene glycol 200 (PEG) were included. The MTz-loaded formulations were obtained by loading optimized composite CARB:CARR- or CARB:SA-based gels (modified with HPMC and/or PEG) with 0.75% of MTz prior to freeze-drying. The physico-chemical properties were investigated using texture analysis (resistance to compressive deformation and adhesion), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. Functional properties were investigated by examining the swelling, porosity, drug release, and in vitro antimicrobial activity using E. coli as a model infection-causative agent. The results showed that HPMC and PEG generally improved the wafer’s appearance, with smoother surfaces for easy insertion. From the physico-chemical characterization studies, only two composite wafers prepared from 8% CARB:SA 1:4 and 8% CARB:SA 1:9 gels were deemed optimal and loaded with MTz. Both formulations showed sustained drug release and achieved almost 100% cumulative release within 72 h in simulated vaginal fluid. The data obtained from the drug dissolution (release) experiments were fitted to various mathematical equations and showed the highest correlation coefficient with the Higuchi equation, suggesting a drug release based on diffusion from a swollen matrix; this was confirmed by the Korsmeyer–Peppas equation. The released MTz inhibited the growth of the E. coli used as a model bacterial organism
    • …
    corecore