619 research outputs found

    Transfinite Lyndon words

    Get PDF
    In this paper, we extend the notion of Lyndon word to transfinite words. We prove two main results. We first show that, given a transfinite word, there exists a unique factorization in Lyndon words that are densely non-increasing, a relaxation of the condition used in the case of finite words. In the annex, we prove that the factorization of a rational word has a special form and that it can be computed from a rational expression describing the word

    Formal Properties of XML Grammars and Languages

    Full text link
    XML documents are described by a document type definition (DTD). An XML-grammar is a formal grammar that captures the syntactic features of a DTD. We investigate properties of this family of grammars. We show that every XML-language basically has a unique XML-grammar. We give two characterizations of languages generated by XML-grammars, one is set-theoretic, the other is by a kind of saturation property. We investigate decidability problems and prove that some properties that are undecidable for general context-free languages become decidable for XML-languages. We also characterize those XML-grammars that generate regular XML-languages.Comment: 24 page

    Regular realizability problems and context-free languages

    Full text link
    We investigate regular realizability (RR) problems, which are the problems of verifying whether intersection of a regular language -- the input of the problem -- and fixed language called filter is non-empty. In this paper we focus on the case of context-free filters. Algorithmic complexity of the RR problem is a very coarse measure of context-free languages complexity. This characteristic is compatible with rational dominance. We present examples of P-complete RR problems as well as examples of RR problems in the class NL. Also we discuss RR problems with context-free filters that might have intermediate complexity. Possible candidates are the languages with polynomially bounded rational indices.Comment: conference DCFS 201

    Splicing Systems from Past to Future: Old and New Challenges

    Full text link
    A splicing system is a formal model of a recombinant behaviour of sets of double stranded DNA molecules when acted on by restriction enzymes and ligase. In this survey we will concentrate on a specific behaviour of a type of splicing systems, introduced by P\u{a}un and subsequently developed by many researchers in both linear and circular case of splicing definition. In particular, we will present recent results on this topic and how they stimulate new challenging investigations.Comment: Appeared in: Discrete Mathematics and Computer Science. Papers in Memoriam Alexandru Mateescu (1952-2005). The Publishing House of the Romanian Academy, 2014. arXiv admin note: text overlap with arXiv:1112.4897 by other author

    Operations preserving recognizable languages

    Get PDF
    Given a strictly increasing sequence s of non-negative integers, filtering a word a_0a_1 ... a_n by s consists in deleting the letters ai such that i is not in the set {s_0, s_1, ...}. By a natural generalization, denote by L[s], where L is a language, the set of all words of L filtered by s. The filtering problem is to characterize the filters s such that, for every regular language L, L[s] is regular. In this paper, the filtering problem is solved, and a unified approach is provided to solve similar questions, including the removal problem considered by Seiferas and McNaughton. Our approach relies on a detailed study of various residual notions, notably residually ultimately periodic sequences and residually rational transductions

    Locally Chain-Parsable Languages

    Get PDF
    If a context-free language enjoys the local parsability property then, no matter how the source string is segmented, each segment can be parsed in- dependently, and an efficient parallel parsing algorithm becomes possible. The new class of locally chain-parsable languages (LCPL), included in deterministic context-free languages, is here defined by means of the chain-driven automa- ton and characterized by decidable properties of grammar derivations. Such au- tomaton decides to reduce or not a factor in a way purely driven by the terminal characters, thus extending the well-known concept of Input-Driven (ID) (visibly) pushdown machines. LCPL extend and improve the practically relevant operator- precedence languages (Floyd), which are known to strictly include the ID lan- guages, and for which a parallel-parser generator exists. Consistently with the classical results for ID, chain-compatible LCPL are closed under reversal and Boolean operations, and language inclusion is decidable
    corecore