23 research outputs found

    Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises

    Get PDF
    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately

    A Desert Tortoise–Common Raven Viable Conflict Threshold

    Get PDF
    Since 1966, common raven (Corvus corax; raven) abundance has increased throughout much of this species’ Holarctic distribution, fueled by an ever-expanding supply of anthropogenic resource subsidies (e.g., water, food, shelter, and nesting substrate) to ecoregion specific raven population carrying capacities. Consequently, ravens are implicated in declines of both avian and reptilian species of conservation concern, including the California (USA) endangered and federally threatened Mojave desert tortoise (Gopherus agassizii; desert tortoise). While ravens are a natural predator of desert tortoises, the inter-generational stability of desert tortoise populations is expected to be compromised as annual juvenile survival is suppressed below 0.77 through a combination of raven depredation and other sources of mortality. To estimate the extent to which raven depredation suppresses desert tortoise recruitment within the Mojave Desert of California, we collected data from 274 variable-radius point counts, 78 desert tortoise decoy stations, and 8 control stations during the spring of 2020. Additionally, we complied a geodatabase of previously active raven nests, observed between 2013 and 2020. Raven density estimates from 4 monitoring areas ranged between 0.63 (eastern most) and 2.44 (western most) raven km-2 (95% CI: 0.35–1.14 and 1.33–4.48, respectively). We used a Bayesian shared frailty model to estimate the effects of raven density and distance to the nearest previously active raven nest on the annual “survival” of juvenile desert tortoise decoys (75-mm Midline Carapace Length), which we then converted into survival estimates for 0- to 10-year-old desert tortoises by adjusting exposure to reflect natural activity patterns. At the 1.72-km median distance from the nearest previously active raven nest, the estimated annual survival of desert tortoises decreased as raven density increased, ranging among conservation areas from 0.774 (eastern most) to 0.733 (western most). Accordingly, our model predicts that desert tortoise populations exposed to raven densities in excess of 0.89 raven km-2, at a distanc

    A Decision Tool to Identify Population Management Strategies for Common Ravens and Other Avian Predators

    Get PDF
    Some avian species have developed the capacity to leverage resource subsidies associated with human manipulated landscapes to increase population densities in habitats with naturally low carrying capacities. Elevated corvid densities and new territory establishment have led to an unsustainable increase in depredation pressure on sympatric native wildlife prey populations as well as in crop damage. Yet, subsidized predator removal programs aimed at reducing densities are likely most effective longer-term when conducted in tandem with subsidy control, habitat management, and robust assessment monitoring programs. We developed decision support software that leverages stage structured Lefkovitch population matrices to compare and identify treatment strategies that reduce subsidized avian predator densities most efficiently, in terms of limiting both cost and take levels. The StallPOPd (Version 4; available at https://doi.org/10.7298/sk2e-0c38.4) software enables managers to enter the area of their management stratum and the demographic properties (vital rates) of target bird population(s) of interest to evaluate strategies to decrease or curtail further population growth. Strategies explicitly include the reduction in fertility (i.e., eggs hatched) and/or the culling of hatchlings, non-breeders and/or breeders, but implicitly comprise reduction in survival or reproduction through subsidy denial. We illustrate the utilities of the software with examples using common ravens (Corvus corax; ravens) in the Mojave Desert of California, USA. Unfortunately, the survival and reproduction effects of each unit of a particular subsidy in that system have remained elusive, though this is the priority of current research. Because the software leverages a life history representation that is known to characterize hundreds of wildlife species in addition to ravens, the work expands the suite of tools available to wildlife managers and agricultural industry specialists to abate bird damage and impacts on sensitive wildlife in habitats with persistent human subsidies

    PROBLEMS WITH MANAGEMENT OF A NATIVE PREDATOR ON A THREATENED SPECIES: RAVEN PREDATION ON DESERT TORTOISES

    Get PDF
    Common ravens (Corvus corax) are a major predator on the threatened desert tortoise (Gopherus [=Xerobates] agassizii). Large numbers of juvenile tortoise shells have been found beneath known raven nests and perches; many shells that show evidence consistent with raven predation have been found sporadically throughout the range of the tortoise; significant proportional decreases in juvenile size/age class distributions have been identified; and people have observed ravens killing, carrying, and consuming juveniles. In 1988 the U. S. Bureau of Land Management initiated a process to evaluate, design, and implement a program to reduce raven predation on desert tortoises. A pilot program was temporarily halted by a law suit filed by the Humane Society of the United States, and a draft long-term plan and Draft Environmental Impact Statement were subsequently issued and are now being modified. Several complex issues have arisen in attempting to design and implement control of ravens including: pitting one native species against another, making management decisions in light of data of varying scientific validity and depth, targeting individuals versus populations, and managing a predation problem over a broad geographic range. Addressing each of the concerns is highly problematic and the solutions are not always satisfying

    Briefly Noted

    No full text

    Briefly Noted

    No full text

    Briefly Noted

    No full text

    Briefly Noted

    No full text

    Briefly Noted: Asian Buffet—All You Can Read

    No full text
    corecore