12 research outputs found

    The Practice and Potential of Renewable Energy Localisation: Results from a UK Field Trial

    Get PDF
    open access articleThe adaptation of electricity demand to match the non-despatchable nature of renewable generation is one of the key challenges of the energy transition. We describe a UK field trial in 48 homes of an approach to this problem aimed at directly matching local supply and demand. This combined a community-based business model with social engagement and demand response technology employing both thermal and electrical energy storage. A proportion of these homes (14) were equipped with rooftop photovoltaics (PV) amounting to a total of 45 kWp; the business model enabled the remaining 34 homes to consume the electricity exported from the PV-equipped dwellings at a favourably low tariff in the context of a time-of-day tariff scheme. We report on the useful financial return achieved by all participants, their overall experience of the trial, and the proportion of local generation consumed locally. The energy storage devices were controlled, with user oversight, to respond automatically to signals indicating the availability of low cost electricity either from the photovoltaics or the time of day grid tariff. A substantial response was observed in the resulting demand profile from these controls, less so from demand scheduling methods which required regular user configuration. Finally results are reported from a follow-up fully commercial implementation of the concept showing the viability of the business model. We conclude that the sustainability of the transition to renewable energy can be strengthened with a community-oriented approach as demonstrated in the trial that supports users through technological change and improves return on investment by matching local generation and consumption

    The Effects of Weather Conditions on Domestic Ground-Source Heat Pump Performance in the UK

    No full text

    ESCoBox: A set of tools for mini-grid sustainability in the developing world

    No full text
    Collaboration with Newcastle University and other NGO and commercial partners. Open Access articleMini-grids powered by photovoltaic generators or other renewable energy sources have the potential to bring electricity to the 17% of the world’s population, mainly in rural areas, that are currently un-served. However, designing and managing a mini-grid so that it is reliable and economically sustainable is difficult because of the high variability of demand that arises from the small population of consumers. We describe an integrated set of four tools to assist mini-grid operators to predict and manage demand. These comprise a decision support tool to predict peak and average demand from a consumer population, a demand disaggregation tool that allows the key statistical properties of connected electricity-consuming appliances to be identified, a battery condition modeling tool which allows the impact on battery life of a planned operating regime to be predicted and a demand control sub-system which limits the operating time of high demand appliances to intervals when they can be supported. Results from application of the tool set to mini-grids in Kenya and The Gambia are presented. We conclude that accessible, usable and low cost tools of this form can improve mini-grid sustainability

    Subparallel thrust and normal faulting in Albania and the roles of gravitational potential energy and rheology contrasts in mountain belts

    No full text
    The active tectonics of Albania and surrounding regions, on the eastern margin of the Adriatic Sea, is characterized by subparallel thrust and normal faulting which, we suggest, is likely to be related to gravitational potential energy contrasts between the low-lying Adriatic Sea and the elevated mountainous areas inland. We calculate the magnitude of the force which the mountains and lowlands exert upon each other as a result of this potential energy contrast. It is likely that this force is largely supported by shear stresses on faults, and if so, the average stresses are less than ∌20 MPa. Alternatively, if the mountains are supported by stresses in the ductile part of the lithosphere, the stresses are likely to be ∌80–240 MPa in magnitude. The mountains of Albania are significantly lower than other ranges, such as the Peruvian Andes, which are thought to be extending in response to potential energy differences, and we discuss the relation between Albania and these other, higher, mountain belts from the perspective of differences in lithosphere rheology. We suggest that the lowlands of western Albania and the Adriatic Sea may have been weakened through time as a result of the deposition of large thicknesses of sediment, which lead to heating of the crystalline basement, a reduction in the potential energy contrast that could be supported by the lowlands, and so normal faulting in the mountains of eastern Albania

    CASCADE: an agent based framework for modelling the dynamics of smart electricity systems

    No full text
    The Complex Adaptive Systems, Cognitive Agents and Distributed Energy (CASCADE) project is developing a framework based on Agent Based Modelling (ABM). The CASCADE Framework can be used both to gain policy and industry relevant insights into the smart grid concept itself and as a platform to design and test distributed ICT solutions for smart grid based business entities. ABM is used to capture the behaviors of different social, economic and technical actors, which may be defined at various levels of abstraction. It is applied to understanding their interactions and can be adapted to include learning processes and emergent patterns. CASCADE models ‘prosumer’ agents (i.e., producers and/or consumers of energy) and ‘aggregator’ agents (e.g., traders of energy in both wholesale and retail markets) at various scales, from large generators and Energy Service Companies down to individual people and devices. The CASCADE Framework is formed of three main subdivisions that link models of electricity supply and demand, the electricity market and power flow. It can also model the variability of renewable energy generation caused by the weather, which is an important issue for grid balancing and the profitability of energy suppliers. The development of CASCADE has already yielded some interesting early findings, demonstrating that it is possible for a mediating agent (aggregator) to achieve stable demand flattening across groups of domestic households fitted with smart energy control and communication devices, where direct wholesale price signals had previously been found to produce characteristic complex system instability. In another example, it has demonstrated how large changes in supply mix can be caused even by small changes in demand profile. Ongoing and planned refinements to the Framework will support investigation of demand response at various scales, the integration of the power sector with transport and heat sectors, novel technology adoption and diffusion work, evolution of new smart grid business models, and complex power grid engineering and market interactions
    corecore